

NFERENCE REPORTS AND EXPERIT PANEL Irviving Sepsis Campaign: ternational Guidelines for Management Sensis and Sentic Shock: 2016	ew Rhodes ^{1*} , Laura E. Evans ² , Waleed Alhazzani ³ , Mitchell M. Levy ⁴ , Massimo Antonelli ⁵ , Ricard Ferrer ⁶ , dkumar ⁷ , Jonathan E. Sevransky ⁸ , Charles L. Sprung ⁹ , Mark E. Nunnally ² , Bram Rochwerg ³ , lon D. Rubenfeld ¹⁰ , Derek C. Angus ¹¹ , Djillali Annane ¹² , Richard J. Beale ¹³ , Geoffrey J. Bellinghan ¹⁴ , lon R. Bernard ¹⁵ , Jean-Daniel Chiche ¹⁶ , Craig Coopersmith ⁸ , Daniel P. De Backer ¹⁷ , Craig J. French ¹⁸ , ro Fujishima ¹⁹ , Herwig Gerlach ²⁰ , Jorge Luis Hidalgo ²¹ , Steven M. Hollenberg ²² , Alan E. Jones ²³ , R. Karnad ²⁴ , Ruth M. Kleinpell ²⁵ , Younsuk Koh ²⁶ , Thiago Costa Lisboa ²⁷ , Flavia R. Machado ²⁸ , John C. Marshall ³⁰ , John E. Mazuski ³¹ , Lauralyn A. McIntyre ³² , Anthony S. McLean ³³ , eeta Mehta ³⁴ , Rui P. Moreno ³⁵ , John Myburgh ³⁶ , Paolo Navalesi ³⁷ , Osamu Nishida ³⁸ , Tiffany M. Osborn ³¹ , ereta Mehta ³⁴ , Rui P. Moreno ³⁵ , John Myburgh ³⁶ , Paolo Navalesi ³⁷ , Osamu Nishida ³⁸ , Tiffany M. Osborn ³¹ , ereta Mehta ³⁹ , Colleen M. Plunkett ²⁵ , Marco Ranieri ⁴⁰ , Christa A. Schorr ²² , Maureen A. Seckel ⁴¹ , topher W. Seymour ⁴² , Lisa Shieh ⁴³ , Thomas Van der Poll ⁴⁹ , Jean-Louis Vincent ⁵⁰ , W. Joost Wiersinga ⁴⁹ , Jor Thompson ⁴⁷ , Sean R. Townsend ⁴⁸ , Thomas Van der Poll ⁴⁹ , Jean-Louis Vincent ⁵⁰ , W. Joost Wiersinga ⁴⁹ , Jet L. Zimmerman ⁵¹ and R. Philip Dellinger ²²
Surviv Surviv Intern	Andrew Rhoc Anand Kuma Gordon D. Ru Gordon R. Ber Gordon R. Ber Seitaro Fujish Dilip R. Karna John J. Marini Sangeeta Me Anders Perne Anders Perne Christopher V B. Taylor Thon Janice L. Zimr

© 2017 SCCM and ESICM

93 Recommendations !370 over Pages Only To Read !30 minutes to Present !

Recommendations

- 93 Recommendations
 - 32 Strong recommendations: "We recommend"
 - 39 Weak recommendations: "We suggest"
 - 18 Best Practice Statements

Determination of Quality of Evidence

Underlying methodology

 High: RCTs
 Moderate: Downgraded RCTs or upgraded observational studies
 Low: Well-done observational studies
 Very Low: Downgraded controlled studies or expert opinion or other evidence

Best Practice Statements

- Strong but ungraded statements
- Use defined criteria

Criteria for Best Practice Statements

Is the statement clear and actionable?

Is the message necessary?

Is the net benefit (or harm) unequivocal?

Is the evidence difficult to collect and summarize?

Is the rationale explicit?

Is the statement better if formally GRADEd?

Guyatt GH, Schünemann HJ, Djulbegovic B, et al: *Clin Epidemiol* 2015; 68:597–600

Diagnosis and Definitions

<u>Mho</u>: A task force organized by the European Society of Intensive Care Medicine and the Society of Critical Care Medicine recognized the need to reexamine the current definitions from the 1991 and 2001 consensus terminology.

<u>How</u> : Retrospective cohort study -12 community and academic hospitals in southwestern Pennsylvania from 2010 to 2012.

nclusion criteria: > 18 years with suspected infection in ED, (ICU), ward

Dnset of suspected infection = positive culture or as antibiotics ordered.

The primary outcome = hospital mortality

Secondary outcome = hospital mortality or ICU length of stay of \geq 3 days

esults: 148,907 electronic health record data of hospitalized patients with uspected infection

andomly split

74,453 in the derivation cohort for developing new criteria

74,454 in the validation cohort for assessment of new and existing criteria

The derivation cohort had 7,836 encounters in the ICU and 66,617 encounters outside of the ICU.

The validation cohort had 7,932 encounters in the ICU and 66,522 encounters outside of the ICU.

- Derived and validated the qSOFA, using SIRS criteria and SOFA score as comparators (2).
- qSOFA performed admirably when utilized in a population outside the ICU setting
- qSOFA score < 2, the in-hospital mortality was only 3%.
- qSOFA of >2 , the in-hospital mortality was 24%.
- When validated in multiple external data sets
- qSOFA's performance remained consistently acceptable
- Seymour CW, et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8): 762-774.

Ability to predict mortality among patients with possible infection outside the ICU

Specificity for mortality	65%	67%	84%
Sensitivity for mortality	64%	68%	55%
Area under ROC curve	0.76	0.79	0.81
Test	SIRS ≥ 2	SOFA≥2	qSOFA ≥ 2

Predicted validity for in-hospital mortality

- With ICU encounters < SIRS and (qSOFA) vs. SOFA</p>
- With the non-ICU encounters > qSOFA vs. SOFA and SIRS

Call (BAT)man or Put on your thinking (HAT)

Altered mentation

Elevated respiratory rate

Systolic hypotension

qSOFA criteria:

Alteration in mental status (GCS < 14) Hypotension - SBP \leq 100 mm Hg Respiratory rate \geq 22/min.

SIRS vs QSOFA

Specificity versus Sensitivity

- Sensitive Test
- · Let's catch a tuna.
- · Use a small mesh net.
- Will eatch a lot of fish, and never miss a tuna.
- Definitely will catch a tuna, but will also get mackerel, perch and spot, which will require further sorting.
- · False positive results.
- * Sensitive but not specific

- Specific Test
- Let's catch a tuna.
- Use a big mesh net.
- Everything in net will be tuna.
- Will catch large tuna, but small tuna, mackerel, perch, and spot will not be in net, so no further sorting needed. Will miss some small tuna we would have wanted to keep.
- False negative results.
- Specific but not sensitive

Hello ! Have You Even Tested This ??????

irst Prospective Analysis of the qSOFA score

- reund Y et al. Prognostic Accuracy of Sepsis-3 Criteria for **In-Hospital Mortality** Among atients With Suspected Infection Presenting to the Emergency Department. JAMA anuary 17, 2017 Volume 317, Number 3
- <u>0 ED across Europe with suspected infection.-879 patients .</u>
- -week period -in France, Switzerland, Spain, and Belgium
- Iulticenter prospective cohort study
- hese values were collected -utilized the patient's worst score during their stay.

<u>ompare</u>

- SOFA score > 2 or greater
- SOFA score by 2 points
- or more SIRS criteria
- evere sepsis=2 or more SIRS criteria and a lactate > 2 mmol/L.

<u>esults</u>

- qSOFA score <2 =3% mortality rate , > 2 =24% mortality rate
- SOFA outperformed SIRS, SOFA and severe sepsis
- SOFA -best diagnostic test characteristics
- ensitivity -70% for hospital mortality
- pecificity of 79%.
- SOFA > 2 =associated with in-hospital mortality with a (HR) of 6.2 vs severe sepsis-(HR) of 3.5

	qSOFA	SIRS	Severe Sepsis	SOFA
ensitivity %)	70	93	47	73
oecificity 6)	79	27	82	70
) LR	3.40	1.29	2.70	2.40
) LR	0.37	0.25	0.64	0.39
UROC 95% CI)	0.80 (0.74- 0.85)	0.65 (0.59- 0.70)	0.65 (0.59- 0.70)	0.77 (0.71- 0.82)
azard atio 95% CI)	6.2 (3.8 – 10.3)		3.5 (2.2- 5.5)	

Figure 2. Receiver Operating Characteristic Curves for In-Hospital Mortality

qSOFA indicates quick Sequential Organ Failure Assessment; SIRS, systemic inflammatory response syndrome; and SOFA, Sequential [Sepsis-related] Organ Failure Assessment. The area under the receiver operating characteristic curves for qSOFA is 0.80 (95% CI, 0.74-0.85); SOFA, 0.77 (95% CI, 0.71-0.82); SIRS, 0.65 (95% CI, 0.59-0.70); and severe sepsis, 0.65 (95% CI, 0.59-0.70).

Thoughts Regarding q sofa

itial assessment due to its **simplicity** for use in the clinical setting.

mple bedside score to rapidly assess patients with suspected infection who are likely to have poor utcomes.

inical prompt for sepsis among patients already thought to be infected

larker for severity of illness

uspected infection who are likely to have a prolonged ICU stay or to die in the hospital can be promptly lentified at the bedside

redictor of mortality

mple, rapid, inexpensive, and valid way to **identify** — among patients with suspected infection nose at a higher **risk of having or developing sepsis**

ot a diagnostic or immediate prognostic screening tool

ot a **standalone indicator for sepsis**

 Sepsis I-II:
 Sepsis = [Suspected infection] + [SIRS]

 alidated in 1 million encounters
 Sepsis-III:
 Sepsis = [Suspected infection] + [qSOFA] + [SOFA]

 AILORS study in LMICs
 Infection indicator
 Mortality indicators

MEWS & NEWS

Modified Early Warning Score

Score	3	2	1	0	1	2	3
Respiratory rate (min ⁻¹)		≤8		9-14	15-20	21-29	> 29
Heart rate (min ⁻¹)		≤40	41-50	51-100	101-110	111-129	> 129
Systolic BP (mmHg)	≤70	71-80	81-100	101–199		≥ 200	
Urine output (ml/kg/h)	Nil	< 0.5					
Temperature (°C)		≤35	35.1-36	36.1-38	38.1-38.5	≥38.6	
Neurological				Alert	Reacting to voice	Reacting to pain	Unresponsive

Chart 1: National Early Warning Score (NEWS)*

PHYSIOLOGICAL PARAMETERS	3	2	1	0	1	2	3
Respiration Rate	≤8		9 - 11	12 - 20		21 - 24	≥25
Oxygen Saturations	≤91	92 - 93	94 - 95	≥96			
Any Supplemental Oxygen		Yes		No			
Temperature	≲35.0		35.1 - 36.0	36.1 - 38.0	38.1 - 39.0	≥39.1	
Systolic BP	≤90	91 - 100	101 - 110	111 - 219			≥220
Heart Rate	S4 0		41 - 50	51 - 90	91 - 110	111 - 130	≥131
Level of Consciousness				A			V, P, or U

"The NEWS initiative flowed from the Royal College of Physicians' NEWSDIG, and was jointly developed and funded in collaboration with the Royal College of Physicians, Royal College of Nuning, National Outreach Forum and NHS Training for Innovation.

NEWS score

Not a test for sepsis.

NEWS is a global riskstratification tool which identifies patients who ar critically ill from *any* disease. Select cutoffs to predict mortality or ICU transfer

Specificity	13%	67%	53%	999	78%
Sensitivity	91%	54%	%///	67%	54%
	SIRS ≥ 2	qSOFA≥2	NEWS 27	NEWS 28	NEWS 2 9

10 Mar.
¥7
LL
<u> </u>
-
\mathbf{O}
100
200
SO.
220
1.00
- C
1.1
0
60
9
1.00
UN
00
-
100
No.
0
- 542
00
and the second s
0
0
A
100
0

	SIRS	qSOFA	MEWS	NEWS
Temperature	`		1	1
Heart rate	>		>	`
Blood pressure		>	>	>
Respiratory rate	>	>	>	`
Oxygen saturation				1
Use of supplemental oxygen				`
Mental status		>	`	`
Leukocyte count	>			
Urine Output			>	

After qSOFA in the ward and ED and In the ICU

SOFA

• JL Vincent in Intensive Care Medicine in 1996

A math problem

SOFA score is a bit complicated

- 6 organ systems
- 9 physiologic variables
- Total 24 points

System / Score	0	-	2	ო	4
Respiration: PaO ₂ /FiO ₂ , mmHg (kPa)	≥400 (53.3)	<400 (53.3)	<300 (40)	<200 (26.7) with respiratory support	<100 (13.3) with respiratory support
Coagulation: Platelets x 10³/μL	≥150	<150	<100	<50	<20
Liver: Bilirubin, mg/dL (µmol/L)	<1.2 (20)	<1.2-1.9 (20-32)	2.0-5.9 (33-101)	6.0-11.9 (102-204)	>12.0 (204)
Cardiovascular	MAP ≥70 mm Hg	MAP <70 mm Hg	Dopamine <5 or dobutamine (any dose) ^b	Dopamine 5.1-15 or epinephrine ≤0.1, or ≤0.1 ^b	Dopamine >15 or epinephrine, >0.1, or norepinephrine >0.1 ^b
Central nervous system: Glasgow coma scale scorec	15	13-14	10-12	6-9	Ŷ
Renal: Creatinine mg/dL (μmol/L); Urine output, mL/day	<1.2 (110)	1.2-1.9 (110-170)	2.0-3.4 (171-299)	3.5-4.9 (300-440); <500	>5.0 (440); <200
Times of Athendation and a		14 14			

Sequential (Sepsis-Related) Organ Function Assessment (SOFA) Score.^a

Figure 2. Abbreviations: PaO2/FIO2, partial pressure of oxygen/fraction of inspired oxygen. a) Adapted from Vincent et al3; b) Catecholamine doss in µg/kg/min, >1 hour; c) Glasgow Coma. Scale scores range from 3-15 (3 minimum, 15 normal).

able 2. Terminolog	gy and International Cla	ssification of Diseases Coding
Current Guidelines and Terminology	Sepsis	Septic Shock
1991 and 2001 consensus terminology ^{9,10}	Severe sepsis Sepsis-induced hypoperfusion	Septic shock ¹³
2015 Definition	Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection	Septic shock is a subset of sepsis in which underlying circulatory and cellular/metabolic abnormalities are profound enough to substantially increase mortality
2015 Clinical criteria	Suspected or documented infection and an acute increase of 22 SOFA points (a proxy for organ dysfunction)	Sepsis ^a and vasopressor therapy needed to elevate MAP 265 mm Hg and lactate >2 mmol/L (18 mg/dL) despite adequate fluid resuscitation ¹³

50-year-pneumonia-RR=24,BP : 95/65mmHg Normal =Urea, GCS: 15

qSOFA-sepsis –Mortality -10% CURB65 score= 0.6% mortality –home-oral

abx

qSOFA	CURB65
 Criteria Abnormal mental status RR ≥22 SBP ≤ 100 	 Criteria Confusion RR ≥ 30 SBP <90 or diastolic Bp ≤ 60 mm BUN > 19 mg/dL Age ≥ 65 YO
Interpretation • >1: sepsis (mortality ~10%)	Interpretation 0: 0.6% mortality 1: 2.7% mortality 2: 6.8% mortality 3: 14% mortality 4-5: 28% mortality

of CRB-65 and quick Sepsis-related an Failure Assessment to predict site of and mortality in pneumonia patients be emergency department: a ospective study

Chen¹, Jun-Yu Wang¹ and Shu-Bin Guo^{1,2}*

t

anostic performance equal to the full SOFA for patients with suspected infection outside the intensive care ound: The quick Sepsis-related Organ Failure Assessment (qSOFA) is a new screening system for sepsis that J/minute, systolic blood pressure <90 mmHg or diastolic blood pressure ≤60 mmHg, age ≥65 years) and CRB : Of 1641 patients, 861 (53 %) were hospitalised (38 % in a general ward, 15 % in the ICU), and the remaining sent study was designed to investigate the predictive performance of qSOFA, CRB-65 (confusion, respiratory on, respiratory rate ≥30/minute, systolic blood pressure <90 mmHq or diastolic blood pressure ≤60 mmHd) 3s: Retrospective analyses of published data on adult patients with pneumonia presenting between January d May 2014 were undertaken. The prevalence of 28-day mortality, hospitalisation and ICU admission were U). The predictive value of qSOFA for mortality and site of care in patients with pneumonia is not clear. ed with regard to qSOFA, CRB and CRB-65 scores. The performance of these three systems for predicting tallity, hospitalisation and ICU admission in patients with pneumonia in the emergency department (ED). es was compared

2.4 % and 45.3 %. Patients with qSOFA scores of 2 and 3 had a significantly higher prevalence of mortality and %) were treated as outpatients or were observed in the ED. Within 28 days, 547 (33 %) of 1641 patients died. OFA scores of 0, 1, 2 and 3 were associated with, respectively, mortality of 16.3 %, 24.4 %, 48.2 % and 68.4 %; on of 28-day mortality, hospitalisation and ICU admission were similar to those for CRB-65 and CRB. Patients be who survived and were not hospitalised or admitted to the ICU (P < 0.001). AUC values of aSOFA for nce of hospitalisation of 37.2 %, 47.4 %, 61.6 % and 73.7 %; and prevalence of ICU admission of 9.3 %, CRB and gSOFA scores of patients who died, were hospitalised and admitted to the ICU nission than patients with identical CR8-65 scores

sions: qSOFA is better than CR8-65 for identification of a high risk of mortality and requirement of ICU

Table 3 Predictive performance of CRB-65, CRB and qSOFA

Outcomes	Predictors	Cut-off value	Sensitivity	Specificity	νqq	NPV	LR ⁺	LR-	OR
Mortality	CRB-65	12	70 %	57 %	45 %	79 %	1.6	0.5	3.059
	CR8-65	2	30.%	88 %	55 %	72 %	2.5	0.8	3.120
	CRB-65	Ň	7 %	98 %	60 %	68 %	3.5	1.0	3.141
	CRB	۲۷ ۱۷	36 %	81 %	51 %	70 96	19	0.8	2.442
	CRB	2	9%6	97 %	62 %	66 %	3.0	6.0	3.201
	qSOFA	Į.	53 %	75 %	52 %	76 %	2.1	9.0	3.418
	qSOFA	2	12 %	97 %	68 %	% 69	4.0	6.0	4.783
Hospitalisation	CRB-65	۲۱ ۱۷	59 %	56 %	60 %	55 %	1.3	0.7	1.807
	CRB-65	2	22 %	86 %	63 %	50 %	1.6	0.9	1.715
	CRB-65	23	5 %	97 %	67 %	48 %	1.7	1.0	1.851
	CRB	١٨ ١	27 %	81 %	62 %	50 %	1,4	6:0	1.630
	CRB	2	6 %	97 %	% 69	48 %	2.0	1.0	2.066
	qSOFA	, VI	42 %	74 %	64 %	53 %	1.6	0.8	2.006
	qSOFA	2	8 %	97 %	74 %	49 %	2.7	1.0	2.673
ICU admission	CRB-65	Ĺ.	76 %	53 %	22 %	93 %	1.6	0.5	3.589
	CRB-65	2	38 %	86 %	32 %	% 68	2.7	0.7	3.611
	CRB-65	23	14 %	98 %	57 %	87 %	7.0	0.9	8.444
	CRB	, VI	45 %	81 %	29 %	% 68	2.4	0.7	3.426
	CRB	2	15 %	97 %	49 %	87 %	5.0	6.0	6.352
	qSOFA	IV]	60 %	70 %	26 %	91 %	2.0	0.6	3.554
	qSOFA	2	18 %	8 %	45 %	87 %	4.5	6.0	5.471

DOI 10.1186/s13054-016-1351-0

Yes that's all very good... But what do I do at the bedside !

Management Issues ...

etecting sepsis early

2012 Recommendation for Initial Resuscitation.

We recommend the protocolized, quantitative resuscitation of patients with sepsis- induced tissue hypoperfusion. During the first 6 hours of resuscitation, the goals of initial resuscitation should include all of the following as a part of a treatment protocol:

a) CVP 8–12 mm Hg
b) MAP ≥ 65 mm Hg
c) Urine output ≥ 0.5 mL/kg/hr
d) Scvo2 ≥ 70%.

N Engl J Med, Vol. 345, No. 19 • November 8, 2001

Variable	Standard Therapy (N=133)	Early Goal-Directed Therapy (N=130)	RELATIVE RISK (95% CI)	P Value
	no. (%	(%)		
In-hospital mortality†				
All patients	59(46.5)	38(30.5)	0.58(0.38 - 0.87)	0.009
Patients with severe sepsis	19(30.0)	9(14.9)	0.46(0.21 - 1.03)	0.06
Patients with septic shock	40(56.8)	29(42.3)	0.60(0.36 - 0.98)	0.04
Patients with sepsis syndrome	44(45.4)	35 (35.1)	0.66(0.42 - 1.04)	0.07
28-Day mortality†	61 (49.2)	40(33.3)	0.58(0.39 - 0.87)	0.01
60-Day mortality†	70 (56.9)	50(44.3)	0.67 $(0.46 - 0.96)$	0.03
Causes of in-hospital death‡				
Sudden cardiovascular collapse	25/119 (21.0)	12/117(10.3)		0.02
Multiorgan failure	26/119 (21.8)	19/117 (16.2)	Ι	0.27

- Protocolized Care for Early Septic Shock (ProCESS)
- 31 ED in the United States
- Australasian Resuscitation in Sepsis Evaluation (ARISE)
- 51 ED in Australia, New Zealand, Finland, Hong Kong, Ireland
- The Protocolised Management in Sepsis (ProMISe)
- 56 ED in the United Kingdom

Characteri	stics of included ran	domised contro	olled trials					
	Number of patients (EGDT/ control)	Desian	Clinical setting	Study population	Goals in EGDT group	Goals in control group	Timing of EGDT	Morta end p
<i>t al</i> 2001	263 (130/133)	P-R-NB-SC	с Ш	Adult patients with severe sepsis, septic shock or sepsis syndrome	SvO ₂ ≥70% SvO2 ≥70% CVP:8-12 mm Hg MAP:65- 90 mm Hg	Standard therapy: CVP:8–12 mm Hg MAP:65–90 mm Hg UO ≥0.5 mL/kg/h	Within the first 6 h	Hospi 28-day 60-day
/2010	303 (157/146)	P-R-NB-MC	ICU	Adult patients with severe sepsis or septic shock	CVP:8-12 mm Hg ScvO₂ ≥70% CVP:8-12 mm Hg SBP >90 mm Hg MAP ≥65 mm Hg HIO >0.5 ml /ka/h	Standard therapy: CVP:8–12 mm Hg SBP >90 mm Hg MAP ≥65 mm Hg	Within the first 6 h	ICU 2
S 2014	895 (439/456) 885 (439/446)	P-R-NB-MC	ED/ICU	Adult patients with septic shock	ScvO ₂ 270% ScvO ₂ 270% CVP:8-12 mm Hg MAP:65- 90 mm Hg UO >0.5 mL/ka/h	Standard therapy: SBP ≥100 mm Hg	Within the first 6 h	30-da 60-da 90-da
014	1591 (793/798)	P-R-NB-MC	ED/ICU	Adult patients with septic shock	ScvO ₂ >70% CVP:8-12 mm Hg MAP:65- 90 mm Hg UO >0.5 mL/ka/h	Usual care	Within the first 6 h	ICU H 28-day 60-day 90-day
2015	1251 (625/626)	P-R-MB-MC	ED/ICU	Adult patients with septic shock	ScvO₂ ≥70% CVP ≥8 mm Hg MAP >60 mm Hg SBP >90 mm Hg	Usual care	Within the first 6 h	Hospi discha 28-da 60-da 90-da

Table 2 The source of bias in terms of patient	population and methodology of i	ncluded trials
	Rivers et al	ProCESS, ARISE and ProMISe
Ilness severity heterogeneity*		
Fluid challenge before enrolment	20 to 30 mL/kg	1000 mL
Blood lactate levels at baseline, mmol/L	6.9	4.2-5.1
APACHE II score at baseline	20.4	15.8-20.7
ScvO ₂ , at baseline, %	49.2	NR
ScvO ₂ , 0–6 h, %	66	75.9†
Mechanical ventilation 0–6 h, %	53.8	19.0–22.4
28-day mortality	49.2%	15.9–24.5%
Methodological differences		
CVC, %‡	100	50.9-61.9
Corticosteroid use	None	8–37%
Antibiotics treatment	After enrolment	Before enrolment
Treatment in control group	Well-defined	Vague
Blinding	Double blinded	Unblinded to the ICU clinicians
Time of conduction	1997–2000	2008–2014 (EGDT recommendati
		SSC Guidelines and the sepsis si

Rivers	Study	1999		ProC	ESS.	
	EGDT	Usual		EGDT	Protocol	Usual
IVF	4.9L	3.5L	IVF	5,oL	<i>5.5</i> L	4.4L
Pressors	27.4%	30,3%	Pressors	\$4%	52%	44%
cvc	Mandatory	I Mandatory	cvc	%56	\$6%	\$7%
PRBC	64.1%	18.5%	PRBC	14.4%	8:3%	7.5%
	ARISE			ProM	JSTI	
	EGDT	Pragmatic		n y	GDT	Usual
IVF	1.96L	1.71L	IVF	24	23L	2.02L
Pressors	66.6%	\$2.8%	Pressors	2	\$3.3%	46.6%
A-Lines	%16	76%	A-Lines		74.2%	62.2%
cVC	%06	61.9%	cvc	6	2.1%	%6'0\$
PRBC	13.6%	7.0%	PRBC	8	%8;	3.8%

	Rivers et al. [1]	ProCESS [6]	ARISE [7]	ProMISe [8]
ion year	2001	2014	2014	2015
n years	1997-2000	2008-2013	2008-2014	2011-2014
r of patients in control/ groups	133/130	902/439	796/792	620/623
r of patients screened/ /month	8	3.9	1.6	2.6
r of patient included/ /month	7.4	0.9	0.5	0.5
% (EGDT group)	49	71	73	70
at inclusion (mEq/l)	7	5	4	5
m arrival at ED to mization (min)	Median 55/mean 80	Mean 190	Median 168	Median 162
dministered before mization	20–30 ml/kg in 30 min (received NA)	<pre>>20 ml/kg in 30 min later >1000 ml (received 2200)</pre>	>1000 ml (received 2500)	>1000 ml (received 1600)
ics within 6 h (%)	89	26	100	100
te antibiotics (%)	95	NA	06	NA
ment of resuscitation in EGDT (%)	99.2	88.1	80 (ScvO ₂ at 6 h)	85
y control/EGDT (%)	50/33	19/21	19/19	29/29

1 Comparison of some features of the Rivers. ProCESS. ARISE. and ProMISe studies

	and a state of the	Comparison of Co		
	finers of	Profitie	Process	attract
Location	9	- 165	18	Australiasin
Papulation	263	1260	1265	1004
		Sepels Defi	wittens	
Suspected / Actual Infection	ġ.	-	Yos	Nen
84R8 orherta a 2 -	- Alle	1.84	Į.	the second
Refractiony (BP or lactation = 4 mmobil	Man	-	Yes	Yes
		Proton		
Fuid before randomisation	DC-02	100011	Champed during much	1000-01
Recruitment	non mor	ASh from ED armed & ADh from thock criteria	<12h train ED armail 8. <2h train shock criteria	«En from ED arrival & «Zh from shool onterta
Intervention	EGDT 6 houm	EGDT 6 hours	EGDT 6 hours	EGOT 6 hours
Centrel	Unut Tempi	Usual therapy	1) Protocci unusi Prempy 2) Usual Priorgy	Unue Periopy
Primary sutcome	In- hospital montality	90-day montally	60-day monality	90-day montaity
		Printing Out	tomé	
Intervention.	20.546	- 10	21.2%	- 18.6%
Centrol	10.0%	100	1118.2% 2118.3%	18.0%

systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, roCESS and ProMISe Investigators

ngus, D.C.. et al. Intensive Care Med <u>(2015</u>) 41: 1549. doi:10.1007/s00134-015-3822-1

o determine whether early goal-directed therapy (EGDT) reduces **mortality** compared with other esuscitation strategies for patients presenting to the emergency department (ED) with septic shock.

anuary 2000 to January 2015.

randomised clinical trials (n = 4735 patients)

l**o effect on the primary mortality outcome** (EGDT: 23.2 % [495/2134] versus control: 22.4 % [582/2601]

ooled estimate of **90-day mortality** from the 3 multicentre studies (*n* = 4063) =**No difference**

GDT increased vasopressor use (OR 1.25)and **ICU admission** [OR 2.19)

GDT is not superior to usual care for ED patients with septic shock but is associated with increased tilisation of ICU resources.

Yu H, Chi D, et al. Effect of early cted therapy on in patients with apsis or septic meta-analysis mised controlled *MJ Open* 2016;**6**: . doi:10.1136/ -2015-008330

BMJ Open Effect of early goal-directed therapy on mortality in patients with severe sepsis or septic shock: a meta-analysis of randomised controlled trials

2144 in the EGDT group and 2159 in the control group resuscitation. However, none of the differences reached were included in this meta-analysis. Overall, there were slight decreases of mortality within 28 days, 60 days Results: 5 studies that enrolled 4303 patients with and 90 days in the random-effect model in patients with severe sepsis or septic shock receiving EGDT statistical significance **Conclusions:** The current meta-analysis pooled data from five RCTs and found no survival benefit of EGDT in patients with sepsis.

28-day mortality

	EGD	F	Contr	lo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
ARISE2014	117	792	127	797	21.6%	0.93 [0.74, 1.17]	ŧ
ProCESS2014	91	439	85	456	20.1%	1.11 [0.85, 1.45]	ł
ProMISe2015	155	625	152	621	23.3%	1.01 [0.83, 1.23]	+
Rivers2001	40	130	61	133	17.8%	0.67 [0.49, 0.92]	ł
Yan2010	39	157	62	146	17.2%	0.58 [0.42, 0.81]	ł
Total (95% CI)		2143		2153	100.0%	0.86 [0.69, 1.06]	٠
Total events	442		487				
Heterogeneity: Tau ² : Test for overall effect	= 0.04; Cl t: Z = 1.4;	$hi^2 = 13$ $1 (P = 0$	8.78, df = 1.16)	= 4 (P =	: 0.008);	$ ^2 = 71\%$	0.2 0.5 1 2 5 Favours [EGDT] Favours [control]

60-day mortality

	EGD	F	Contr	lo		Risk Ratio	Risk Ra	tio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random	1, 95% CI
ARISE2014	132	792	139	796	26.4%	0.95 [0.77, 1.19]	+	
ProCESS2014	92	439	86	456	20.9%	1.11 [0.85, 1.45]	•	1
ProMISe2015	176	625	178	626	32.5%	0.99 [0.83, 1.18]	+	
Rivers2001	50	130	70	133	20.2%	0.73 [0.56, 0.96]	ł	
Total (95% CI)		1986		2011	100.0%	0.94 [0.81, 1.10]	•	
Total events	450		473					
Heterogeneity: Tau ²	= 0.01; CI	$hi^2 = 5.$	23, df =	3 (P =	0.16); l ² =	= 43%	0.2 0.5 1	2
lest for overall effect	c: z = 0.74	4 (F = C	(04)				Favours [EGDT] Fa	avours [control]

90-day mortality

	EGD	F	Contr	lo		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
ARISE2014	147	792	150	796	28.5%	0.98 [0.80, 1.21]	÷	
ProCESS2014	129	405	139	412	31.1%	0.94 [0.78, 1.15]	+	
ProMISe2015	184	623	181	620	40.4%	1.01 [0.85, 1.20]	+ -	
Total (95% CI)		1820		1828	100.0%	0.98 [0.88, 1.10]	•	
Total events	460		470					
Heterogeneity: Tau ² : Test for overall effect	= 0.00; Ch :: Z = 0.31	ni ² = 0. L (P = C	.27, df =).75)	2 (P =	0.87); l ² =	- 0%	0.2 0.5 1 2 5 Favours [EGDT] Favours [control]	

The River's work was useful....

- As it provided us a construct on how to understand resuscitation:
 - Start early- (give antibiotics)
 - Correct hypovolaemia
 - Restore perfusion pressure
 - And in some cases a little more may be required..!
- These concepts are as important today as they ever were.

Recommendations

- 93 Recommendations
 - 32 Strong recommendations: "We recommend"
 - 39 Weak recommendations: "We suggest"
 - 18 Best Practice Statements

Fluids

Initial Resuscitation

30ml/kg of intravenous crystalloid fluid be given within the **first 3 hours.**

(Strong recommendation; low quality of evidence)

Type of Fluids

Fluid Therapy

- **Crystalloids** as the fluid of choice for initial resuscitation and subsequent intravascular volume replacement
- **Strong** recommendation, moderate quality of evidence).

- Albumin in addition to crystalloids when patients require substantial amounts of crystalloids
- Weak recommendation, low quality of evidence).

	Events/	total								
Study	Hydroxyethyl starch	Crystalloid or albumin		e Si Si Si Si Si Si Si Si Si Si Si Si Si	sk ratio 5% CI)	•	2	Veight (%)	Risk ratio (95% CI)	
Low risk of bias				2	_					
6S ⁹	87/398	65/400				-		64.4	1.35 (1.01 to 1.8	(<u>)</u>
BaSES ⁵¹	28/117	23/124			-	T		22.2	1.29 (0.79 to 2.1	$\overline{1}$
CRYSTMAS ¹¹	21/100	11/96					1	11.2	1.83 (0.93 to 3.5	(6)
Dolecek 2009 ⁵	0/26	0/30							Not estimable	
Dubin 2010 ⁵⁴	6/0	2/11	ł					2.3	0.24 (0.01 to 4.4	(4)
Total (95% CI)	136/650	101/661			•		1.6 - 2.5	100.0	1.36 (1.08 to 1.7	72)
Test for heterog	eneity: $\chi^2 = 2.16$, df=3,								
P=0.54, ² =0%		0	0.2	0.5		2	S			
Test for overall e	ffect: z=2.61, P	=0.009 H	avour: nydrox starch	s yethyl		Fav co	/ours ntrol			

MAP

Mean Arterial Pressure

- Average pressure driving blood forward into tissues throughout cardiac cycle
- Formula for approximating mean arterial pressure

 $MAP = SBP + (2 \times DBP)$ 3 MAP = mean arterial pressure SBP = systolic blood pressure DBP = diastolic blood pressure

High versus Low Blood-Pressure Target in Patients with Septic Shock

<u>Initial</u> target mean arterial pressure of 65 mmHg in patients with septic shock requiring vasopressors.

(Strong recommendation; moderate quality of evidence)

DOI: 10.1056/NEJMoa1312173 Copyright © 2014 Massachusetts Medical Society. SEPSISPAM Trial was published along side ProCESS (Protocol-Based Care for Early Septic Shock) trial April 2014

- Multicenter, open label trial of 776 patients with septic shock from 29 hospitals in France
- Septic Shock = Sepsis with Refractory Hypotension after 30cc/kg bolus of IVF
 - Primary Outcome: 28 day mortality
- Also looked to see if higher MAP beneficial in patients with chronic HTN

CKU High versus Low Blood-Pressure Target in Patients with Septic Shock

SEPSISPAM Trial

ONE SIZE DOESN'T FIT ALL

776 patients when the mark of	th septic shock, 29 cent 2010 to Dec 2011	ers	
	Low MAP 65 to 70 mm Hg	High MAP 80 to 85 mm Hg	
Doubling of S-Cr (ALL)	41.6%	38.6%	X 0.42
No Chronic HTN	33%	38.5%	X 0.32
Chronic HTN	52.3%	38.6%	<i>r</i> 0.02
Renal Replacement Therapy (ALL)	35.8%	33.5%	X 0.05
No Chronic HTN	30.7%	34.8%	X 0.36
Chronic HTN	42.2%	31.7%	J 0.046

Perre Aslar, Peter Rudermacter, D.a. N.Engli Med 2014, 370:1583-159

Vasopressor

VASOACTIVE MEDICATIONS

2016	Norepinephrine > Vasopressin > Epinephrin			
2012	Choice of vasopressors: Norepinephrine > epinephrine > Vasopressin			

Vasoactive agents

Norepinephrine as the first choice vasopressor
(Strong recommendation, moderate quality of evidence).

- Adding either Vasopressin (up to 0.03 U/min) or Epinephrine to norepinephrine with the intent of raising MAP to target, or adding vasopressin (up to 0.03 U/min) to decrease norepinephrine dosage.
- (Weak recommendation, low quality of evidence)

Peripheral vascular effects

Should we tailor vasopressors to the patient's physiology?

ONE SIZE DOESN'T

Choice of Vasopressors

- 28 days and divided groups into Norepinephrine VAAST trial in 2008 looked at 779 patients over vs. Vasopressin
- mortality among patients with septic shock who compared with norepinephrine would decrease 🍬 No mortality reduction – adjunctive therapy Hypothesized that low-dose vasopressin as were being treated with conventional (catecholamine) vasopressors.

Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock

Julio T. Grannan, M.D., Michelle M. Sterres, B.Sc. M., Diducieli J. Grob, M.D., Juffrey J. Proziniff, M.B., R.S., Ph.D. Paul C. Hitbert, M.D., D. James Cooper, B.M., B.S., M.D., Cheryl L. Holmen, M.D., Sergenta Mehila, M.D., Jarrens A. Bisseell, M.D., Korth R. Walley, M.D., Jost Sirejin, Pr.D., Arthony C. Gardisti, M.H., B.S., M.D. and Dioter Ayers. M.Sc., for the VASST Investigatory*

			Physiolog	gic effect		Patient	presentation	ı effect
Drug	Usual Dose	.bv	Vc.	Ē	Chr.	HR	MAP	8
orepinephrine	5-30 mcg/min	Ø	****	•	**	۵/۵	***	Ú
	2-10 mcg/kg/min	>	>	***	>	>	>	>
סמתמוווווה	> 10-20 mcg/kg/min	**	*	***	**	**	Ú	*
	1-3 mcg/kg/min	>	Ø	**	>	Ø	Ø	Ø
opamine	3-10 mcg/kg/min	>	Ø	***	*	>	*	>
	> 10-20 mcg/kg/min	Ø	***	***	***	**	*	*
	1-5 mcg/min	>	*	****	**	>	*	*
oinepnrine	> 5 mcg/min	Ø	***	***	***	**	**	**
henylephrine	20-200 mcg/min	Ø	****	Ø	Ø	Ø/-	*	Ú
ilrinone	0.375-0.75 mcg/kg/min	*	Ø	***	***	**	Ú	*
asopressin	0.01–0.04 units/min	Ø	****	Ø	Ø	Ø	A A A	♦\Ø

ble 2: Comparison of antihypotensive drugs and their effects

nis table schematically shows the effects of each medication using the following key: Vd.-vasodilation, Vc.-vasoconstriction, In.-inotropy, Chr.-chronotropy; HR: heart rate, MAP: mean arterial essure, CO: cardiac output; Ø-No or insignificant change, V-slight, VV-mild, VVV-moderate, VVVV-maximum, -V-slight decrease, Ú or / -variable effect depending on clinical indition and/or individual patient response.

1 prospective RCT and a subsequent meta-analysis show equivalent outcomes comparing epinephrine vs. norepinephrine (<u>Myburgh</u> <u>2008</u>, <u>Avni 2015</u>).

- <u>VANISH</u> and <u>VANCS</u> trials support the use of vasopressin as a frontline vasopressor in patients with sepsis.
- Overall, norepinephrine, epinephrine, and vasopressin are *all* supported by evidence as potential first-line vasopressors.

Lactate

ELEVATED LACTATE CAUSES

sepsis shock states cardiac arrest liver disease seizures asthma ischemic tissue trauma bowel dysfunction medications alcoholism

straightanursingstudent.com

Table 4. Characteristics of Serum Lactate Level Cutoff Values for Complete Case Analysis and Imputation Analysis Using Surviving Sepsis Press and and address

campaign uatabase						
	Serum Lactate L	evel, mmoVL				
	2		<mark>83</mark>		24	
Characteristic	Died/Total	% (95% CI)	Died/Total	% (95% CI)	Died/Total	% (95% CI)
Complete Case Analysis (I	1= 18 795)					
Hospital mortality, %	5757/18795	30.6 (29.9-31.4)	6101/18795	32.5 (31.8-33.2)	6456/18975	34,3 (33.7-35.0)
Sensitivity, %	5372/6509	82.5 (81.6-83.4)	3779/6509	58.1 (56.8-59.3)	2811/6509	43.2 (42.0-44.4)
Specificity, %	2748/12286	22.4 (21.6-23.1)	6418/12 286	52.2 (51.4-53.1)	8564/12 286	(69.7 (68.9-70.5)
%'Ndd	5372/14910	36.0 (35.3-36.8)	3779/9647	39.2 (38.2-40.2)	2811/6533	43.0 (41.8-44.2)
NPV, %	2748/3885	70.7 (69.3-72.2)	6418/9148	70.1 (69.2-71.1)	8564/12286	(2010-10.2) (69.8-10.7)

Lactate can help guide resuscitation

 Guiding resuscitation to normalize lactate in patients with elevated lactate levels as a marker of tissue hypoperfusion.

(Weak recommendation; low quality of evidence)

trials
five
<u> </u>
used
goals
tative
esusci
22

Control Group	CVP > 8 mm MAP > 65mm svcO2 >70%	MAP > 60 mm HR < 100/min CVP 8-12 mm UOP > 0.5 cc/kg HgB > 7 mg/dL svcO2 monitoring allowed	CVP > 8 mm MAP > 65 UOP > 0.5 ml/kg/hr svcO2 > 70%	Lactate clearance >10% Other targets not specified*	CVP > 8 mm MAP > 65 svcO2 > 70%
Lactate Clearance Group	CVP > 8 mm MAP > 65mm Lactate clearance >10%	MAP > 60 mm HR < 100/min CVP 8-12 mm UOP > 0.5 cc/kg HgB > 7 mg/dL svcO2 monitoring allowed Lactate clearance >20%	CVP > 8 mm MAP > 65 UOP > 0.5 ml/kg/hr svcO2 > 70% Lactate clearance > 10% (or <2 mM)	Lactate clearance >30% Other targets not specified*	CVP > 8 mm MAP > 65mm Lactate clearance >10%
	Jones 2010	Jansen 2010	Lyu 2015	Tian 2012	Yu 2013

*The full manuscript is in Chineese. This table is based on the abstracts published in English.

Source Control

ANAGEMENT OF SEPSIS SOURCE CONTROL

eradicate the source of the infection are l component of therapy This may

rainage

ent of devitalized infected tissue of infected prosthesis. We recommend that a specific anatomic diagnosis of infection requiring emergent source control be identified or excluded as rapidly as possible in patients with sepsis or septic shock, and that any required source control intervention be implemented as soon as medically and logistically practical after the diagnosis is made.

Best Practice Statement).

Timing of Antibiotics

Antibiotics

IV antimicrobials be initiated ASAP after recognition and within **1** h for both sepsis and septic shock.

(Strong recommendation, moderate quality of evidence)

Start antibiotics within 1 hour

Kumar A. et al., Crit Care Med 2006, 34:1286

Early antibiotics are good !

Author	Ν	Setting	Median time (mins)	Odds ratio for death
Gaieski CCM 2010; 38;1045- 53	261	ED, USA (shock)	119	0.30 (1st hour vs all times)
Daniels Emerg Med J 2010; doi:10.1136	567	Whole hospital, UK	121	0.62 (1 st hour vs all times)
Kumar CCM 2006; 34(6): 1589-1596	2154	ED, Canada (shock)	360	0.59 (1 st 3 hours vs delayed)
Appelboam CCM 2010; 14(Suppl 1):50	375	Whole hospital, UK	240	0.74 (1 st 3 hours vs delayed)
Levy CCM 2010; 38(2): 1-8	15022	Multi-centre		0.86 (1 st 3 hours vs delayed)

Increased mortality associated with delays in antibiotic administration either from shock recognition or time from ED triage.

Puskarich MA et al. One year mortality of patients treated with an emergency department based early goal directed therapy protocol for severe sepsis and septic shock: a before and after study. Crit Care. 2009; 13(5):R167.

Ferrer R et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock From the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014 Aug; 42(8):1749–55.

Gaieski DF et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010 Apr; 38(4):1045–53

Kumar A et al.Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006 Jun; 34(6):1589–96.

eptic shock patients suffer most from delayed antibiotics !

(Am J Respir Crit Care Med. 2017 March 27. Vincent X Liu, , Oakland, California

<u>To quantify the impact of antibiotic timing on mortality rates in different types</u> <u>of sepsis</u>

35,000 adults treated for sepsis at 21 ED in northern California 2010 and 2013.

The median time to the first antibiotics was 2.1 hours

<u>Hospital mortality for sepsis</u> =9% > likely with each hour of delayed antibiotics

Absolute mortality after 1 hour's delay in antibiotics 3% for sepsis 8% for septic shock patients

Broad Spectrum Antibiotics

- Empiric broad-spectrum therapy with one or more antimicrobials to cover all likely pathogens.
- (Strong recommendation, moderate quality of evidence).

Failure to initiate appropriate empiric therapy in sepsis and septic shock is associated with > in morbidity and mortality

- Barie PS etal.(2005) Influence of antibiotic therapy on mortality of critical surgical illness caused or complicated by infection. Surg Infect. 6(1):41–54
- brahim EH etal. (2000) The influence of inadequate antimicrobial treatment of bloodstream nfections on patient outcomes in the ICU setting. Chest 118(1):146–155

Survival < X5 for septic shock treated with an empiric regiment that fails to cover the offending pathogen

Kumar A, et al (2009) Initiation of inappropriate antimicrobial therapy results in a five-fold reduction of survival in human septicshock. Chest 136(5):1237–1248

Empiric Combination

Empiric combination therapy (using at least two antibiotics of different antimicrobial classes) aimed at the most likely bacterial pathogen(s) for the initial management of septic shock.

(Weak recommendation; low quality of evidence)

Routine Combination therapy ?

 Combination therapy not be routinely used for ongoing treatment of most other serious infections, including bacteremia and sepsis without shock.

(Weak recommendation; low quality of evidence).

 Against combination therapy for the routine treatment of neutropenic sepsis/bacteremia.

(Strong recommendation; moderate quality of evidence).

Met analytic Studies of Combination therapy

Produces higher survival in septic shock

Benefit in mortality risk > 25%.

Mortality risk in low-risk (<15% mortality risk) with- out septic shock

Kumar A et al. (2010) A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 38(8):1651–1665

Kumar A et al. (2010) Early combination antibiotic therapy yields improved survival compared with mono-therapy in septic shock: a propensity-matchedanalysis. Crit Care Med 38(9):1773–1785

- <u>Direct evidence from adequately powered RCTs</u> of <u>Combination therapy</u>
- Not available !
- <u>Clinical outcome in bacteremia and sepsis without</u> <u>shock for Combination therapy</u>

Evidence =No !

Safdar N, (2004) Does combination antimicro-bial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis. 4(8):519–527

Paul M, (2006) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 1:CD003344

Antibiotic Stewardship

 Empiric antimicrobial therapy be narrowed once pathogen identification and sensitivities are established and/or adequate clinical improvement is noted.

(BPS)

- Antimicrobial treatment duration of 7-10 days is adequate for most serious infections associated with sepsis and septic shock.
 - (Weak recommendation; low quality of evidence)
- Procalcitonin levels can be used to support shortening the duration of antimicrobial therapy in sepsis patients.
 - (Weak recommendation; low quality of evidence)

De-escalation

Observational studies

Early de-escalation of multidrug therapy is associated with equivalent or superior clinical outcomes in sepsis and septic shock

Morel J, et al (2010) De-escalation as part of a global strategy of empiric antibiotherapy management. A retrospective study in a medico-surgical intensiv care unit. Crit Care 14(6):R225

Joung MK, et al (2011) Impact of de-escalation therapy on clinical outcomes for intensive care unit-acquired pneumonia. Crit Care 15(2):R79

irect de-escalation of antimicrobial therapy in severe infections and sepsis

Matthaiou DK, (2012) An ESICM **systematic review and meta-analysis** of **procalcitonin-guided Antibiotic therapy** algorithms in adult critically ill patients. Intensive Care Med 38(6):940–949

Prkno A, (2013) **Procalcitonin guided therapy** in intensive care unit patients with severe sepsis and septic shock—a systematic review and meta-analysis. Crit Care 17(6):R291

Nestwood M, et al (2015) **Procalcitonin testing to guide antibiotic therapy** for the treatment of sepsis n intensive care settings and for suspected bacterial infection in emergency department settings: a systematic review and cost-effectiveness analysis. Health Technol Assess 19(96):v–xxv, 1–236

Soni NJ, et al (2013) **Procalcitonin-guided antibiotic therapy**: a **systematic review and meta-analysis**. J Hosp Med. 8(9):530–540

De Jong E, et al (2016) Efficacy and safety of **procalcitonin guidance in reducing the duration of Antibiotic treatment** in critically ill patients: a **randomised,** controlled, open-label trial. Lancet Infect Dis. 16(7):819–827

Steroids

CORTICOSTEROIDS

Against using intravenous hydrocortisone to treat septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability.

If this is not achievable, we suggest intravenous hydrocortisone at a dose of 200 mg per day.

(Weak recommendation; low quality of evidence)

Why was this recommended?

COCHRANE review: 2004

Annane, Bellisant, Bollaert, Briegel, Keh and Kupfer : Names recognizable from previously mentioned studies

Corticosteroids for treating severe sepsis and septic shock

15 trials identified (N = 2023)

- Corticosteroids did not improve 28 day mortality from all causes
- Corticosteroids DID improve ICU mortality
- Corticosteroids DID increase the proportion of shock reversal by day 7
- Low dose steroids over > 5 days DID reduce 28 day mortality

2008

• **CORTICUS study:** Corticosteroid Therapy of Septic Shock

- multicenter, randomized, double-blind, placebo-controlled trial
- Close to 500 pts
- Major outcome measure: death at 28 days
- CONCLUSION:
 - No survival benefit
 - Hydrocortisone reverses shock faster, but increases the rate of secondary infections
 - Shock is reversed faster IN THOSE IN WHO SHOCK WAS REVERSED
 - i.e. if you were going to get better... You would get better faster with steroids

Sprung et al, **Hydrocortisone therapy for patients with septic shock.** N Engl J Med. 2008 Jan 10;358(2):111-24.

Corticosteroids in the Treatment of Severe Sepsis and Septic Shock in Adults

N = 2138

- Analysis of the since-1998 subgroup: consisently good quality, 12 trials with only low-dose long-course steroids (200-300mg daily), only in vasopressor-dependent adults
- Uniformly, short courses of high dose steroids are **not supported**.

Annane et al, Corticosteroids in the Treatment of Severe Sepsis and Septic Shock in Adults A Systematic Review JAMA. 2009;301(22):2362-2375.

RESEARCH

Open Access

Clinical impact of stress dose steroids in patients with septic shock: insights from the PROWESS-Shock trial

²edro Póvoa^{1,2}*, Jorge I F Salluh^{3,4}, Maria L Martinez^{5,6}, Raquel Guillamat-Prats^{5,6}, Dianne Gallup⁷, ⁴Ussein R Al-Khalidi⁷, B Taylor Thompson⁸, V Marco Ranieri⁹ and Antonio Artigas^{5,6}

Abstract

Introduction: The aim of our study was to evaluate the clinical impact of the administration of intravenous steroids. alone or in conjunction with drotrecogin-alfa (activated) (DrotAA), on the outcomes in septic shock patients.

placebo for 96 hours). A propensity score for the administration of intravenous steroids for septic shock at baseline of treatment weighting of the propensity score was used to estimate the effect of intravenous steroids, alone or in was constructed using multivariable logistic regression. Cox proportional hazards model using inverse probability Methods: We performed a sub-study of the PROWESS-Shock trial (septic shock patients who received fluids and vasopressors above a predefined threshold for at least 4 hours were randomized to receive either DrotAA or conjunction with DrotAA, on 28-day and 90-day all-cause mortality.

placebo + no steroids N = 442). The propensity weighted risk of 28-day as well as 90-day mortality in those treated treated vs. those not treated with steroids did not differ among those randomized to DrotAA vs. placebo nor was and Gram-negative sepsis (N = 461), the propensity weighted risk of 28-day as well as 90-day mortality in those therapy. In patients with lung infection (N = 744), abdominal infection (N = 510), Gram-positive sepsis (N = 420) Results: A total of 1695 patients were enrolled of which 49.5% received intravenous steroids for treatment of vs. those not treated with steroids did not differ among those randomized to DrotAA vs. placebo (interaction septic shock at baseline (DrotAA + steroids N = 436; DrotAA + no steroids N = 414; placebo + steroids N = 403; similarly, the course of vasopressor use and cardiovascular SOFA did not appear to be influenced by steroid p-value = 0.38 and p = 0.27, respectively) nor was a difference detected within each randomized treatment. a difference detected within each randomized treatment.

unable to find noticeable positive impact from intravenous steroids for treatment of septic shock at baseline either Conclusions: In the present study of septic shock patients, after adjustment for treatment selection bias, we were in patients randomized for DrotAA or placebo.

corticosteroid tREatment iN criticAlly The ADRENAL study: ADjunctive IIL patients with septic shock

Comparative timelines

- 3.5 years, n=299, 19 sites Annane trial
- 3.5 years, n=499, 52 sites CORTICUS
- n=778, 27 sites 5 years, VASST
- n=2700, 70 sites 3 years, ADRENAL

Glucose Control

Causes of Hyperglycemia in Critically III Patients

- Increased catecholamines (endogenous or exogenous)
 - Increased glucocorticoids (endogenous or exogenous)
- In sulin resistance
- TPN
- Dextrose infusion
- Surgery
- Anesthesia
- Inflammatory mediators

GLUCOSE CONTROL

Commencing insulin dosing when -2 consecutive blood glucose levels are >10 mmol/L.

Target an upper blood glucose level **≤10 mmol/L** rather than an upper target blood glucose ≤6.1 mmol/L.

(Strong recommendation; high quality of evidence)

Glucose Control

No evidence that targets between **7.8 and 10** mmol/L are different from targets of **6.1 to 7.8** mmol/L

Treatment should avoid hyperglycemia (>10 mmol/L), hypoglycemia, and wide swings in glucose levels.

Dellinger P. *Crit Care Med.* 2013;41:580–637 Dellinger P. *Intensive Care Med.* 2013;39:165-228

Severe Hypoglycemia ≤40mg/dL (2.2 mmol/L)

Treatment vs control P<0.001

Take Home Points:

- **Sepsis** = life-threatening organ dysfunction caused by a dysregulated host response to infection
- Septic Shock = Need for Vasopressors AND Lactate >2 mmol/L
- Severe Sepsis is OUT
- SIRS is OUT and qSOFA/SOFA are IN

SURVIVING SEPSIS CAMPAIGN RECOMMENDATION HIGHLIGHTS

	2012	2016
S DEFINITION	Systemic manifestation of infection + suspected infection Severe sepsis: sepsis + organ dysfunction	Life threatening organ dysfunction caused by dysregulated response to infection No severe sepsis category
NITIAL SCITATION	at least 30 cc/	(g in first 3 hours
	Crystalloid fluid (no recommendatio Albumin if patients requir	ns on 0.9% NaCl vs balanced solution) e "substantial" fluids (weak)
	Protocolized care including CVP ScVO2	Use dynamic resuscitation markers (passive leg raise) Target MAP of 65mmHg Reassess hemodynamic status to guide resuscitation
	Normalize lactate	Normalize lactate
PRESSORS	target MAF 1. Norej 2. Epinephrine if not at target MAP OR vaso 3. Avoid dopami	^o of 65 mmHg pinephrine pressin to reduce norepinephrine requirement ne in most patinets
EROIDS	Only indicated for patients with septic shock	refractory to adequate fluids and vasopressors
TIBIOTICS	One or more antibiotics active against presumed pathogen	Initial broad spectrum antibiotics (ex: vancomycin + piperacillin-tazobactam)
	Combination therapy (double coverage) for neutropenic patients and pseudomonas	Against combined therapy (i.e. do not double cover pseudomonas)
		May use procalcitonin to guide de-escalation
E CONTROL	Achieve within 12 hours, if feasible	Achieve as soon as medically and logically feasible

Please No More Recommendations ! Please !

Than you !

