

Cellular antioxidant activity of rice bran oil at different stages of refining

Tao Zhang, PhD Candidate

School of Food Science and Technology State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety

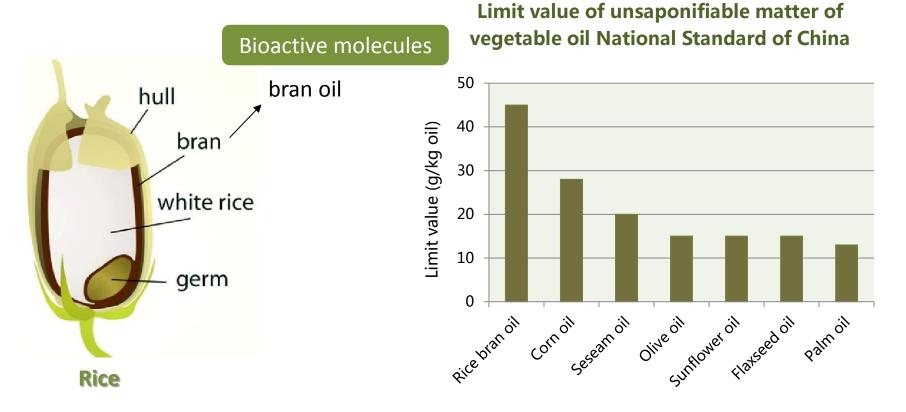
May 23-25 | Hanoi, Vietnam

Structure of the presentation

Introduction

Cellular antioxidant activity (CAA) assay

Results and discussions


G Summary and future perspectives

Introduction

3

Rice bran oil & unsaponifiable matter

Bioactive compound existed in RBO is in the form of unsaponifiable matter

Introduction

Minor components in rice bran oil

Table 1

Minor components present in vegetable oils.

Food Chemistry 164 (2014) 551–555

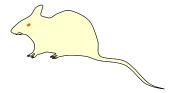
Minor components	Oils					
	РО	OLO	SNO	RBO	SESO	LSO
Tocopherols (T) (mg/100 g of oil)						
α	22.9 ± 1.2 ^c	13.3 ± 1.0 ^b	36.9 ± 2.7 ^d	13.2 ± 0.4 ^b	1.1 ± 0.2^{a}	$23.4 \pm 2.3^{\circ}$
β + γ	nd	1.1 ± 0.2^{a}	2.93 ± 0.3 ^b	23.3 ± 1.7 ^d	65.7 ± 4.2^{e}	$12.1 \pm 0.8^{\circ}$
δ	nd	0.8 ± 0.1^{a}	0.67 ± 0.1^{a}	2.1 ± 0.2^{b}	$3.8 \pm 0.3^{\circ}$	0.6 ± 0.1^{a}
Tocotrienols $(T_3)(mg/100 \text{ g of oil})$						
α	27.5 ± 2.1^{b}	nd	nd	16.5 ± 0.9^{a}	nd	nd
β + γ	1.1 ± 0.2^{a}	nd	nd	54.2 ± 3.7 ^b	nd	nd
δ	12.2 ± 0.6^{b}	nd	nd	0.91 ± 0.1^{a}	nd	nd
Total (T + T ₃) (mg/100 g of oil)	63.7 ± 4.1^{d}	15.2 ± 1.3^{a}	$40.5 \pm 3.1^{\circ}$	110.2 ± 2.3^{f}	70.6 ± 4.7^{e}	36.1 ± 3.2^{b}
Oryzanol (mg/100 g of oil)						
Methyl ferulate	nd	nd	nd	228 ± 10.6	nd	nd
Cycloartenyl ferulate	nd	nd	nd	105 ± 9.8	nd	nd
24-Methylene cycloartenyl ferulate	nd	nd	nd	492 ± 18.6	nd	nd
Campesteryl ferulate	nd	nd	nd	375 ± 16.3	nd	nd
β-Sitosteryl ferulate	nd	nd	nd	186 ± 11.8	nd	nd
Polyphenols (mg/100 g of oil)	nd	38.2 ± 3.6^{b}	nd	nd	nd	32 ± 0.8^{a}
β -Carotene (mg/100 g of oil)	41.8 ± 4.9^{d}	$2.4 \pm 0.3^{\circ}$	0.3 ± 0.1^{a}	0.7 ± 0.1^{b}	0.6 ± 0.1^{b}	0.8 ± 0.2^{b}

Introduction

Minor components in rice bran oil

Food Chemistry 164 (2014) 551-555

Table 2


Total antioxidant activity and lipid peroxides in serum of rats fed native (N) or minor constituents removed (MCR) oils.

Oils fed to rats	Total antioxidant activity			
	N (μg of Trolox equiv./dL)	MCR (μg of Trolox equiv./dL)		
РО	22.8 ± 0.9^{b}	3.5 ± 0.4^{a}		
OLO	26.3 ± 1.5 ^b	4.5 ± 0.3^{a}		
SNO	9.2 ± 0.4^{b}	2.8 ± 0.2^{a}		
RBO	35.2 ± 1.4^{b}	4.7 ± 0.2^{a}		
SESO	$29.7 \pm 1.7^{\rm b}$	3.6 ± 0.5^{a}		
LSO	20.6 ± 1.1^{b}	3.9 ± 0.2^{a}		

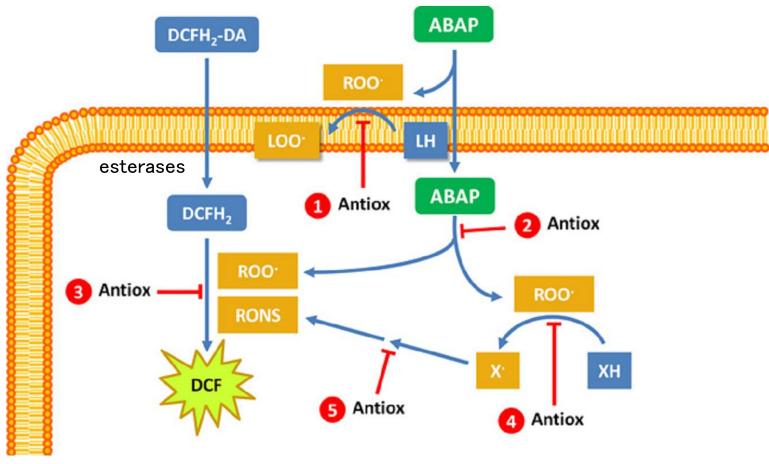
Group A: Minor components removed (MCR)oil

	GNO		RBO	
Liver	N	MCR	N	MCR
Total antioxidant activity (μ g of trolox equivalent/mg lipid)	$7.3 \pm 0.6^{\circ}$	1.3 ± 0.2^{a}	21.6 ± 1.3^{e}	2.7 ± 0.3^{b}
Protein carbonyls (nmol/mg protein)	28.2 ± 1.3^{d}	33.6 ± 2.1^{e}	15.6 ± 1.4^{a}	$22.7 \pm 1.7^{\circ}$
8-OHdG (nmol/mg protein)	4.8 ± 0.3^{d}	5.4 ± 0.4^{d}	1.9 ± 0.2^{a}	$3.3 \pm 0.4^{\circ}$
Lipid peroxidation (nmol of MDA/mg protein)	12.3 ± 0.6^{d}	14.4 ± 1.0^{e}	6.2 ± 0.3^{a}	$8.9 \pm 0.4^{\circ}$

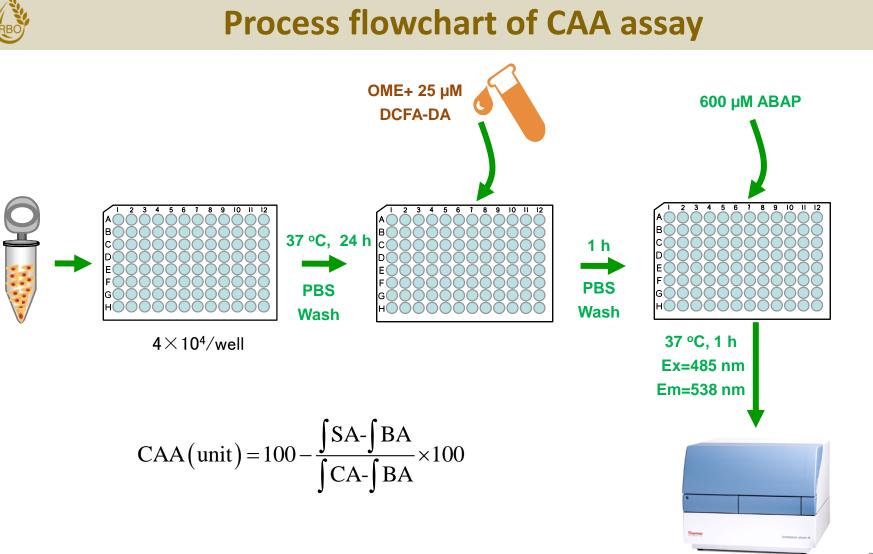
J Med Food 20 (7) 2017, 1-11

Group B: Native (N) oil

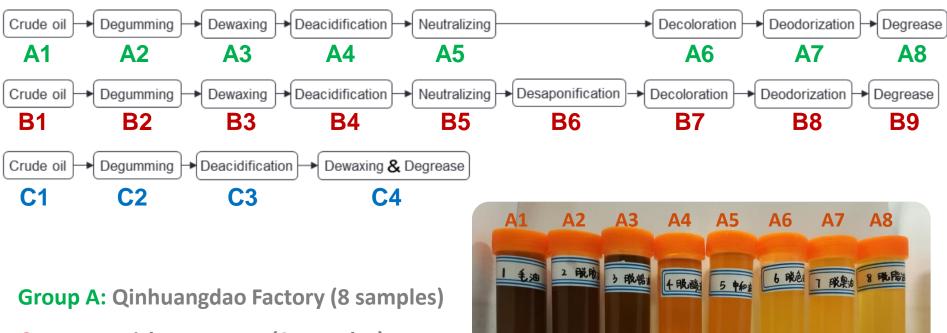
Therefore, while studying the effect of rice bran oil on antioxidant status in experimental systems, we should consider the contributions of minor compounds present in unsaponifiable fractions.


Comparison of chemical and CAA assays

	Chemical assays	Cell-based assays		
Assay Principles	Based on known chemical reactions between limited number of reagents	Based on interaction between added compounds and complex enzymatic reactions in biological system		
Extraction of Active Ingredients	Some flexibility Must take place in physiolog solution; limited use of s			
Use of Alcohol-based Solvents	Yes, if no interference with chemical reactions in assay	Yes, if properly diluted, tested for tolerance, and altered cellular behavior (depends on assay)		
Dimethyl Sulfoxide (DMSO) as Solvent	Yes, with appropriate controls, if no interferenceNo, alters bioavailability defeating the purpose of bioavailability in vitro; DN assay; DMSO is a free radical scavengerNo, alters bioavailability defeating the purpose of bioavailability in vitro; DN inflammatory and can e mitochondrial ROS for			
Data Analysis and Interpretation	Quantitative	Qualitative		
Expectation of Linear Dose-responses	Yes	No		
Applicability of Area-under-curve	Yes	No 7		

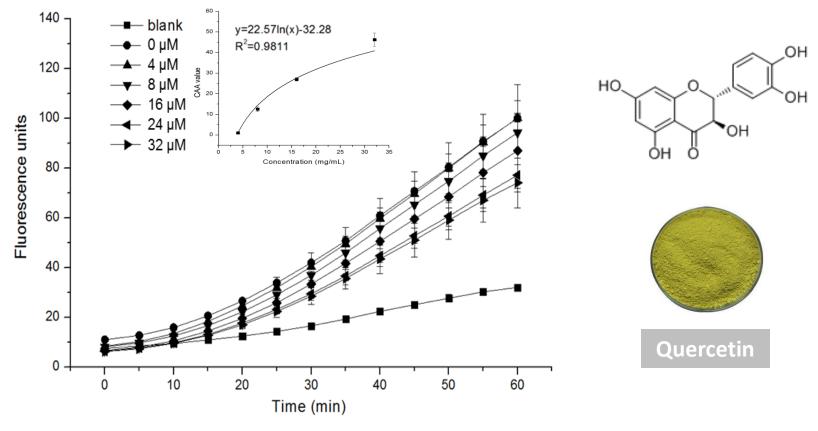

Introduction

Method and principle of CAA assay

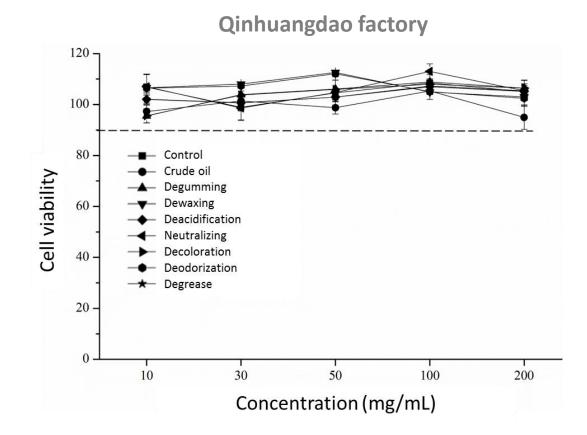

Introduction

Detail information of rice bran oils

- **Group B:** Taizhou Factory (9 samples)
- **Group C:** Ha'erbin Factory (4 samples)

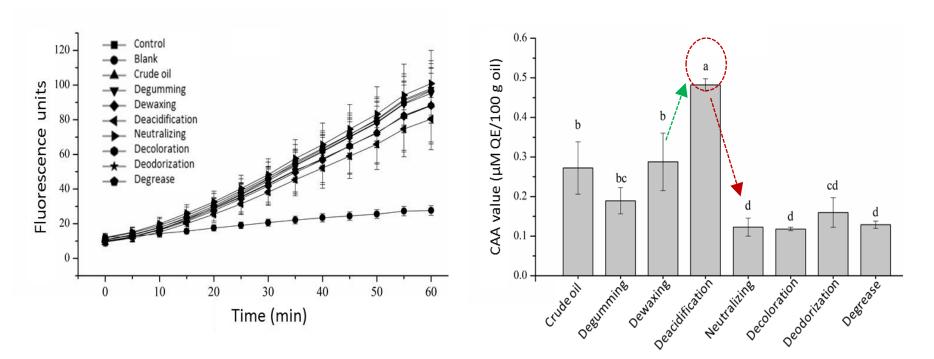

Samples of Group A from Qinhuangdao Factory

CAA assay model specification


Fluorescence was inhibited by quercetin in a dose-dependent manner.

RBO

Cell viability of rice bran oil methanol extracts


Cell viability was higher than 90%, cytotoxicity was not observed.

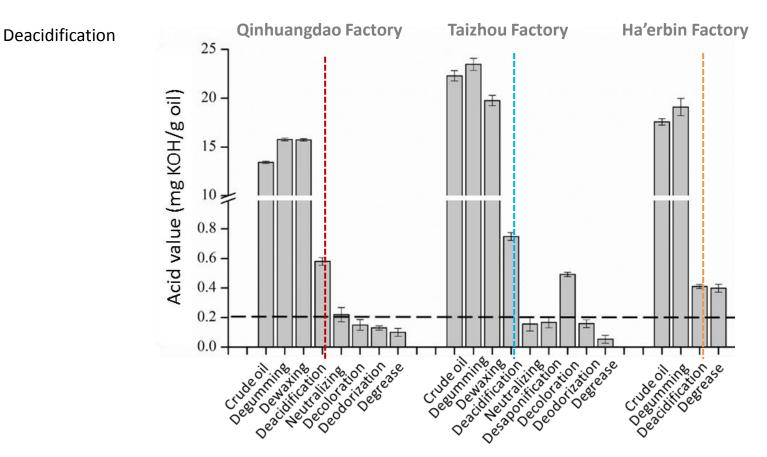
Effect of refining process on CAA value



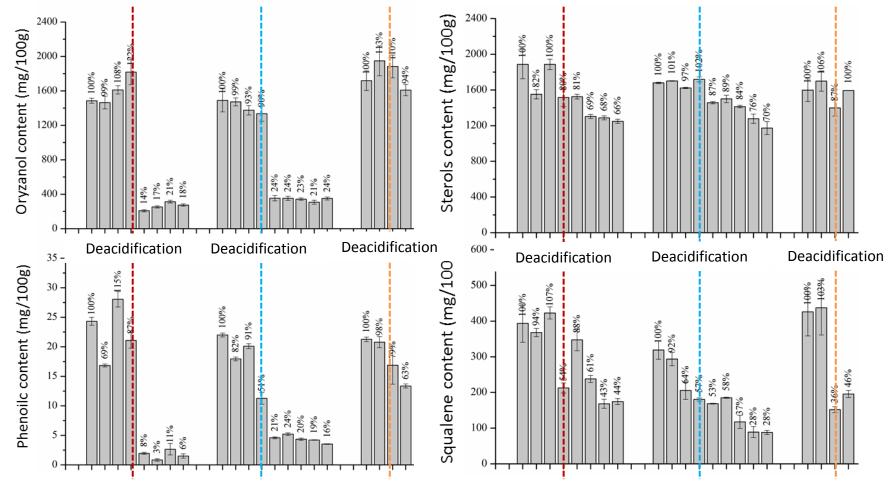
Deacidification was a critical process that influenced the CAA value.

Results

Effect of refining process on CAA value


Why the CAA value changed significantly at the point of deacidification? 14

Effect of refining process on acid value


The deacidification process efficiently removed the free fatty acids in the oil.

RBO

Effect of refining process on minor components

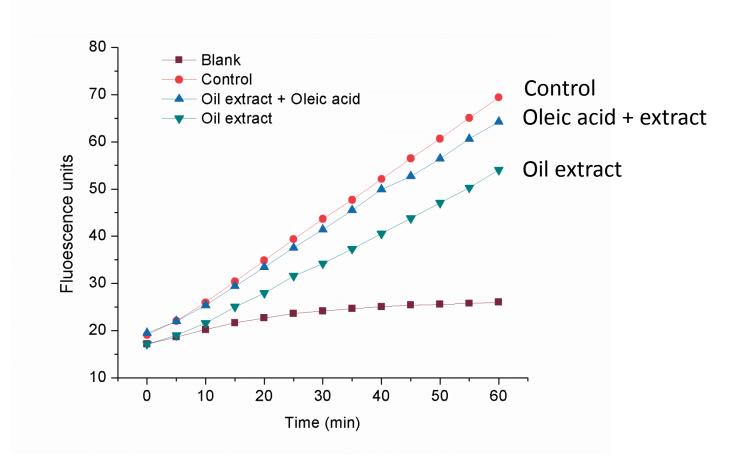
The dewaxing process efficiently removed the minor components in the oil. ¹⁶

Effect of refining process on CAA

• Key points during the refining process:

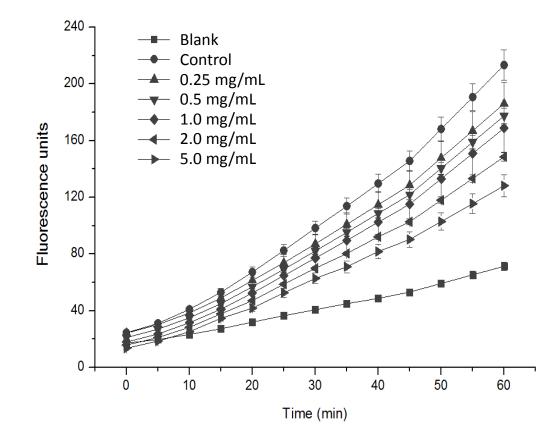
- Acid value (free fatty acids)
- Minor components.
- Deacidification

Whether the changes of CAA value are really related to free fatty acids and minor components?



RBO

Effect of free fatty acid on CAA value



Answer 1: Oil extracts with free fatty acids exhibited lower CAA value.

Effect of methanol extract on CAA value

Answer 2: Higher concentration of oil extracts exhibited higher CAA value. 19

RBO

Effect of refining process on antioxidase

	T-AOC	SOD	CAT
Control	0.66 ± 0.02	5.87 ± 0.24	12.66 ±1.50
H ₂ O ₂	0.40 ± 0.01	1.79 ± 0.06	4.39 ± 0.20
Quercetin + H ₂ O ₂	0.26±0.03	3.15±0.03	9.33±0.59
Crude oil + H ₂ O ₂	0.23±0.00	4.15±0.10	7.48±0.37
Deacidification oil + H_2O_2	0.71±0.03	3.24±0.07	10.47±0.20
Refined oil product + H ₂ O ₂	0.20±0.02	5.31±0.25	5.65 ± 0.57

- Crude oil
- Higher free fatty acids
- Higher minor components

Deacidification oil

- Higher minor components
- Less free fatty acid

• Refined oil

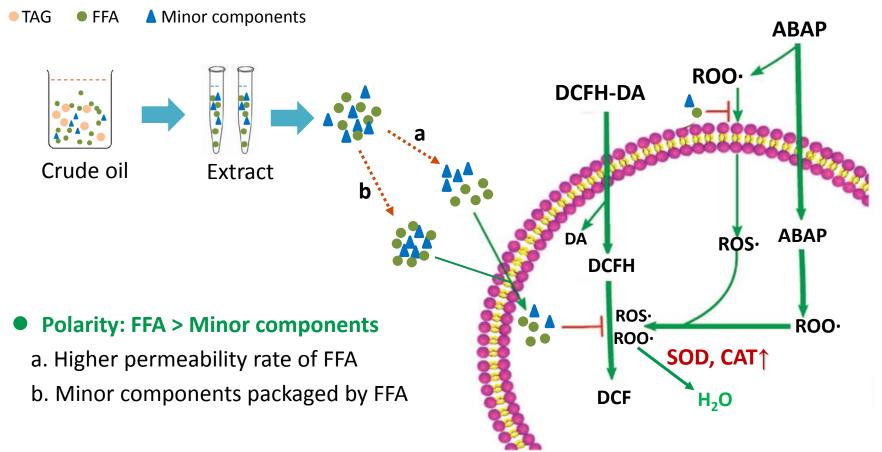
- Less free fatty acid
- Less minor components

 The rice bran oil with abundant minor components and less free fatty acids exerted higher activity of antioxidase.

Pearson correlation coefficient analysis

Tab. Pearson correlation coefficient among minor components and CAA value

	Tocopherol	Squalene	Campesterol	Stigmasterol	Oryzanol	Polyphenol
CAA value	0.644	0.585	0.909**	0.838**	0.725*	0.661


(*p<0.05, **p<0.01)

• CAA value was significantly correlated with sterol and oryzanol.

Proposed mechanisms

Summary & Perspectives

• Attention should be given to minor constituents

- RBO contains sufficient amounts of endogenous minor constituents .
- Minor constituents have a vital role in providing anti-oxidant properties.
- Refining methods for oils should be optimized
 - Edible oil needs precise and appropriate processing.
 - Refining methods should be optimized to retain oryzanol and sterol.

This work was supported by "Science Fund of Wilmar Global R&D Center".

The 5th International Conference of Rice Bran Oil ²/₂015