

Wax: Co-Product of Rice Bran Oil Refining

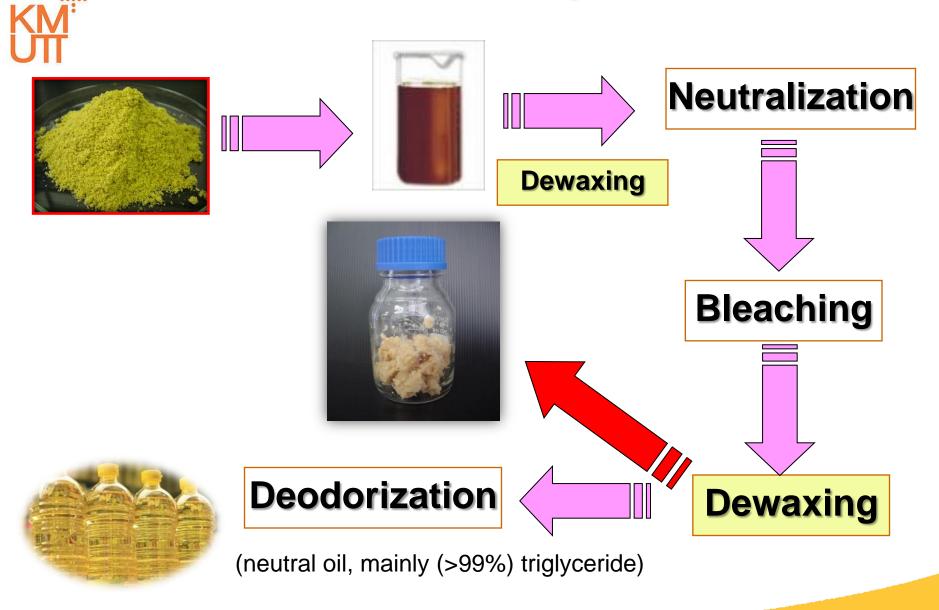
Assoc. Prof. Dr. Kornkanok Aryusuk

Lipid Technology Laboratory

Biochemical Technology Division,

School of Bioresources and Technology,

KMUTT., Bangkok, Thailand

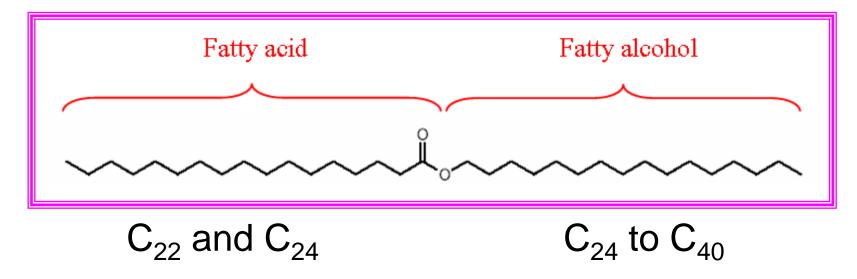

E-mail: kornkanok.ary@kmutt.ac.th

Outline

- Rice bran wax
 - Crude rice bran wax
 - Application of (pure) rice bran wax
 - Preparation of pure rice bran wax by transesterification process
- Policosanol
 - Application
 - Preparation
 - Saponification process
 - Transesterification process

Chemical Refining

Crude Rice Bran Wax (CRBW)


- **→ WAX ESTER (20-80%)**
- Glycerides (20-80%)
- Free fatty acid
- Others

Wax Esters

Vali *et al*, 2005, "A process for the preparation of food-grad rice bran wax and the determination of its composition", *JAOCS*, 82: 57-64.

Food and Drug Administration (FDA) § 172.890 Rice bran wax

Rice bran wax may be safely used in food in accordance with the following conditions:

- (a) It is the refined wax obtained from rice bran and meets the following specifications:
 - Melting point 75 − 80°C.
 - Free fatty acids, 10% (max).
 - Iodine number, 20 (max).
 - Saponification number 75 120.

Food and Drug Administration (FDA) § 172.890 Rice bran wax

(b) It is used or intended for use as follows:

Food	Limitation in food	Use
Candy	50 ppm	Coating
Fresh fruits and vegetables	Do	Do
Chewing gum	2 1/2 pct	Plasticizing material

Others application of Rice bran wax

- Replace expensive carnuba wax for industrial application such as
 - cosmetics
 - medical applications
 - polishing wax
 - * Rich source of **POLICOSANOL**

Preparation of Pure Rice Bran

You may notice in the former slide that

- FDA mentions only the refined wax from rice bran
- Applications of rice wax are in the refined (pure) form and other impurities must be removed.

Purification of RBW

Gopala Krishna et al, 1998

"A process for the preparation of >95% purified wax from wax sludge bran oil"

Purification of RBW

Vali et al, 2005

A process for the preparation of food-grad rice bran wax and the determination of its composition, *JAOCS*, 82: 57-64.

CRBW

Soxhlet extraction, 65°C, 30 min, hexane

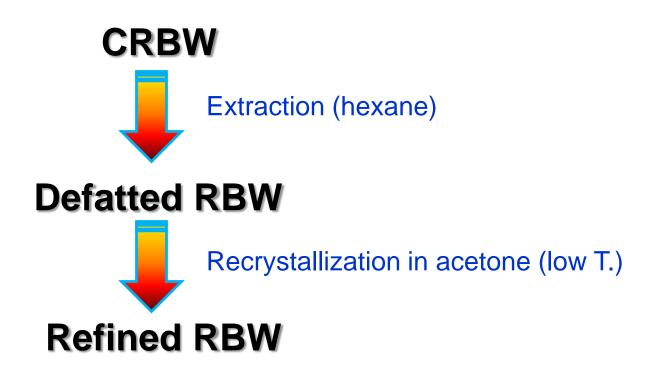
Soxhlet extraction, 80°C, 30 min, ISP

Defatted RBW

Refluxed, 80°C, 30 min (NaBH₄ in ISP)

Cooled to RT, filtration

Refined RBW


(Mp 81-83°C)

Purification of RBW

Gunawan et al, 2006

Purification and identification of rice bran oil fatty acid steryl and wax esters, *JAOCS*, 83: 449-456.

The Present Study

- To prepare pure RBW (PRBW) by removing the glycerides from CRBW with the aim for:
 - Lower operation temperature & time
 - Reduce solvent uses
 - Use environmental-friendly solvent
- 2. Separation technique should be simplified

"Transesterification"

"Selective transesterification"

Transesterification

$$H_{2}C-O-C-R'$$
 $H_{2}C-OH$
 $RO-C-R'$
 $H_{2}C-OH$
 $RO-C-R'$
 $H_{2}C-OH$
 $RO-C-R'$
 $H_{2}C-OH$
 $RO-C-R'$
 $H_{2}C-OH$
 $H_{2}C-OH$
 $H_{2}C-OH$
 $H_{2}C-OH$
 $H_{2}C-OH$
 $H_{3}C-OH$
 $H_{4}C-OH$
 $H_{4}C-OH$
 $H_{5}C-OH$
 $H_{5}C-OH$
 $H_{5}C-OH$
 $H_{5}C-OH$
 $H_{5}C-OH$

Triglyceride 3 Alcohol Glycerol 3 Esters

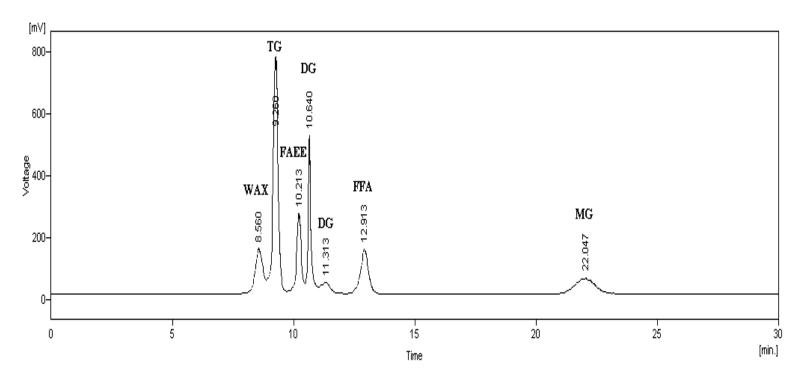


Fig. 1 HPSEC chromatogram of lipids on a 100-Å Phenogel column using isooctane/ toluene/ acetic acid (65:35:0.15, v/v/v) as mobile phase. Detector: ELSD, column & injector temp: 60°C

Aryusuk, et.al, 2011, "Separation and determination of wax content using 100-Å Phenogel column", *JAOCS*, 88: 1497-1501.

CRBW

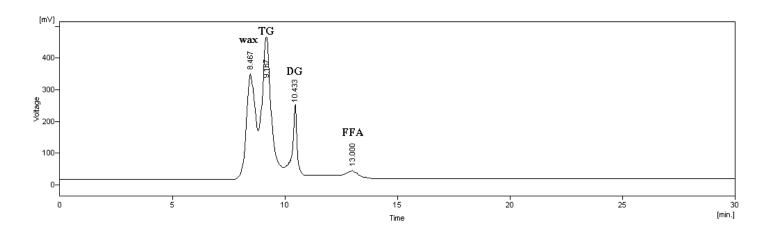
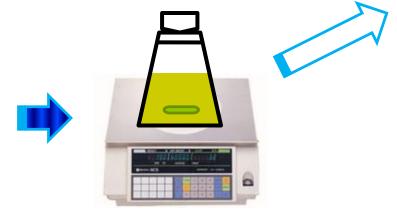


Fig. 2 HPSEC chromatogram of CRBW on a 100-Å Phenogel column using isooctane/ toluene/ acetic acid (65:35:0.15, v/v/v) as mobile phase. Detector: ELSD, column & injector temp: 60°C.

- 31.29% WE
- 64.65% TG & DG
- 4.06% FFA



Experimental Setup

Stopped reaction with glacial acetic acid

Dissolved catalyst (NaOH/ KOH) in anhydrous ethanol

CRBW: Ethanol = 1: 30, Room T.

Washed

Mixing CRBW with anhydrous ethanol at RT

Phenogel Column (7.8x300 mm, 100-Å

Mobile phase: 0.15% acetic acid in isooctane:

toluene (65: 35)

HPSEC-ELSD

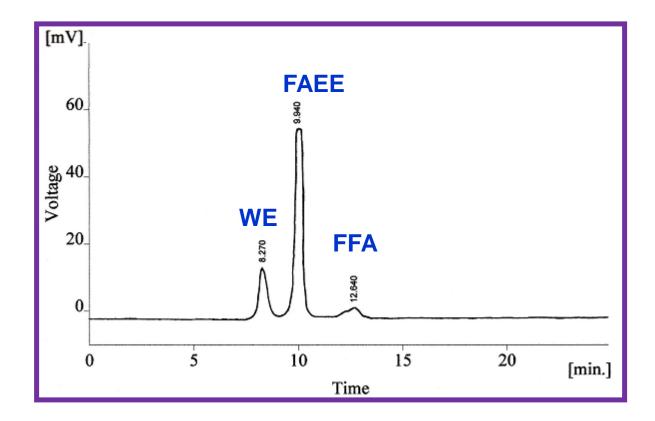


Fig. 3 HPSEC chromatogram of transesterified RBW using 1.6% NaOH as catalyst at 5 min.

Transesterification of CRBW by using NaOH

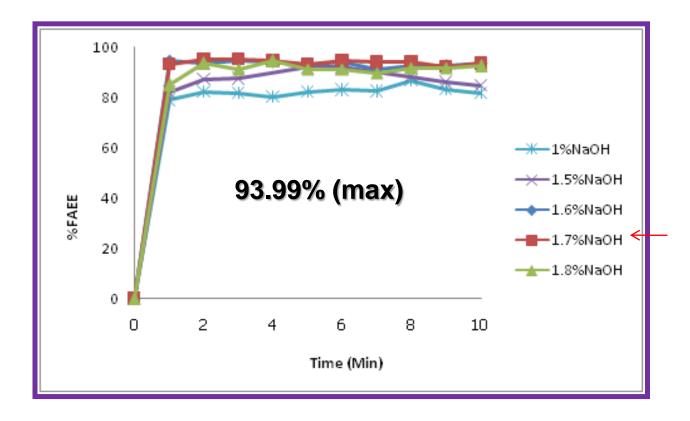


Fig. 4 The FAEE derived from transesterification of CRBW by using NaOH as catalyst at room temperature, molar ratio of CRBW: ethanol = 1: 30.

Transesterification of CRBW by using KOH

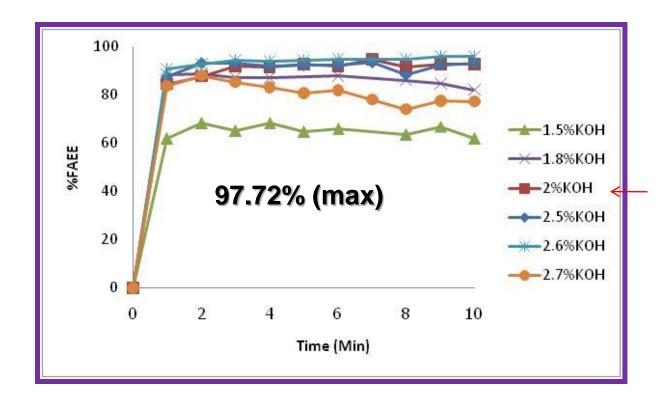
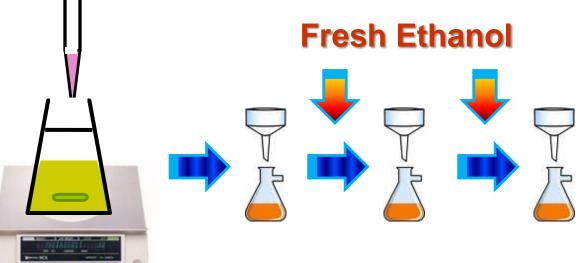
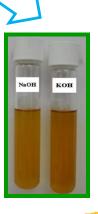



Fig. 5 The FAEE derived from transesterification of CRBW using KOH as catalyst at room temperature, molar ratio of CRBW: ethanol = 1: 30.


Purification of transesterified RBW

dried in hot air oven at 50°C, 3 h

PRBW

FAEE

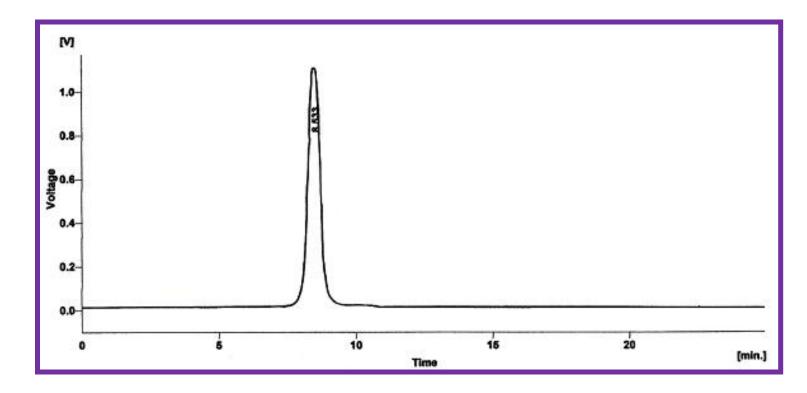
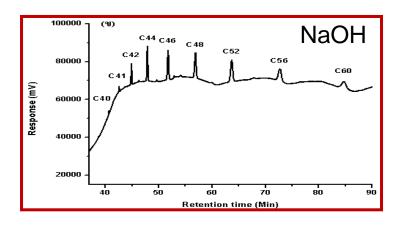


Fig. 6 HPSEC chromatogram of PRBW (WE) after being washed twice with fresh ethanol.

Fig. 7 The PRBW (WE) obtained from selective transesterification by using NaOH and KOH as catalyst.

Table 1 Physical and chemical properties of PRBW


Properties	FDA specification	PRBW (NaOH)	PRBW (KOH)
Mp (°C)	75-80	79-80	79-80
IV	20 (max)	6.5	6.5
SN	75-120	85	85
FFA (%)	10 (max)	1.5	1.5
Appearance		Free- flowing solid	Free- flowing solid
Color		Off-white	Off-white
Particle size (μm)		63-106	63-106

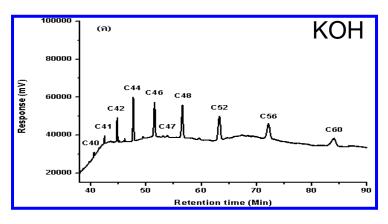
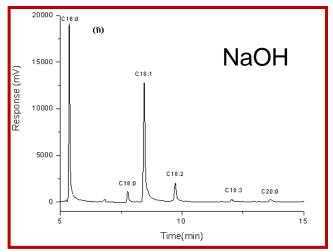
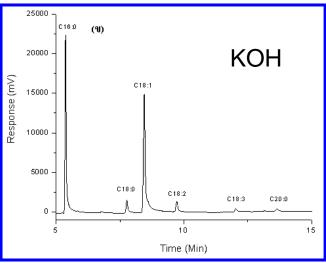


Table 2 The compositions of rice bran WE determined by HT-GC

(column: ZB-5; detector: FID; inj.& det. temp.: 360°C;

column temp.: 150°C 1.5 min rise 5°C-350°C hold 50 min.)





Carbon number	WE (%)		
	NaOH	KOH	
40	1.77	3.40	
41	10.95	10.21	
42	5.82	5.84	
44	12.34	12.19	
46	13.54	13.75	
48	15.76	15.29	
52	17.34	16.87	
56	14.03	13.51	
60	8.44	8.94	

Table 3 The compositions of rice bran FAEE determined by GC (column: BPX-70; detector: FID; inj.& det. temp.: 360°C; column temp.: 180°C)

Carbon	FAEE (%)		
number	NaOH	KOH	Refined
			RBO
C16:0	43.43	43.91	21.41
C18:0	3.55	4.24	1.18
C18:1	43.53	45.89	41.41
C18:2	7.23	3.97	35.50
C18:3	0.94	0.83	0.30
C20:0	1.32	1.17	0.20

Table 4 Some properties of fatty acid ethyl ester (FAEE).

	Fatty acid ethyl ester			er
Properties	Std. * biodiesel	NaOH	КОН	Refined RBO
Iodine Value (IV)	120 max	49.76	46.06	93.02
Cetane Index (CI)	51 min	70.5	71.5	60.4
Kinematic viscosity at 40°C (cSt)	3.5-5.0	18.95	19.79	4.7

^{*} EN 14214

Conclusion

- Both NaOH and KOH could be used as catalyst for selective transesterification of CRBW to prepare PRBW
- The transesterification of glycerides at RT was rapid and completed within 5 min with high molar ratio of the ethanol to wax.
- The wax ester and FAEE greatly differ in solubility and could be easily separated by simple filtration.
- The great advantages of the proposed method are
 - Reduction in solvent consumption
 - The reaction occur at room temperature
 - Easy separation
 - Greatly shorten the purification time

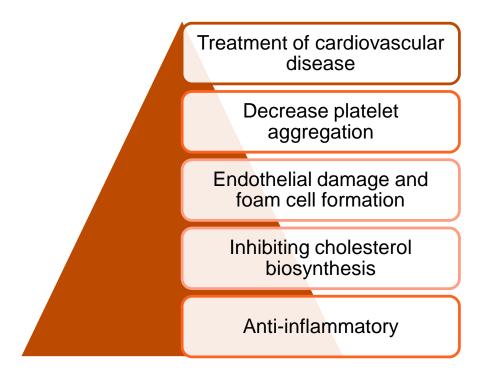
Up-scale Production

Batch or continuous reactor may be applied

100 liter reactor

16 Kg, CRBW + 27.6 L, Ethanol + 469.2 g, NaOH, RT, 10 min

Plate & Frame Filter


Policosanol

- Mixture of long chain aliphatic primary alcohols
- Extracted from waxy materials of animals and plants

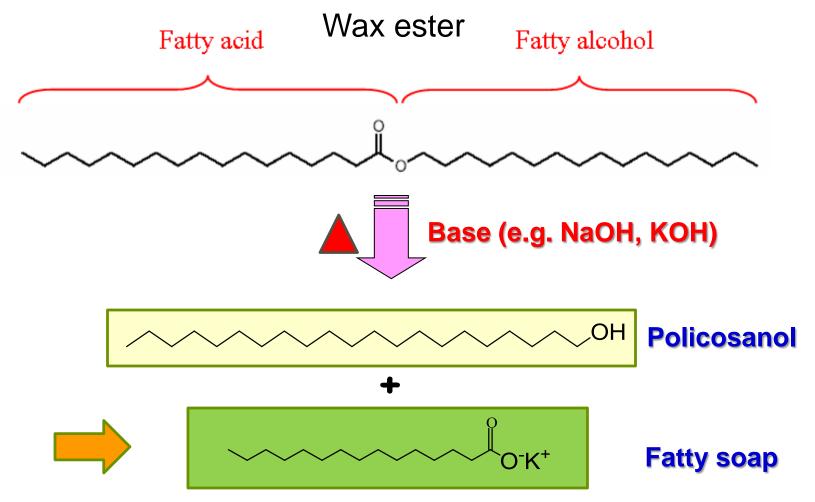
Health benefits of policosanol

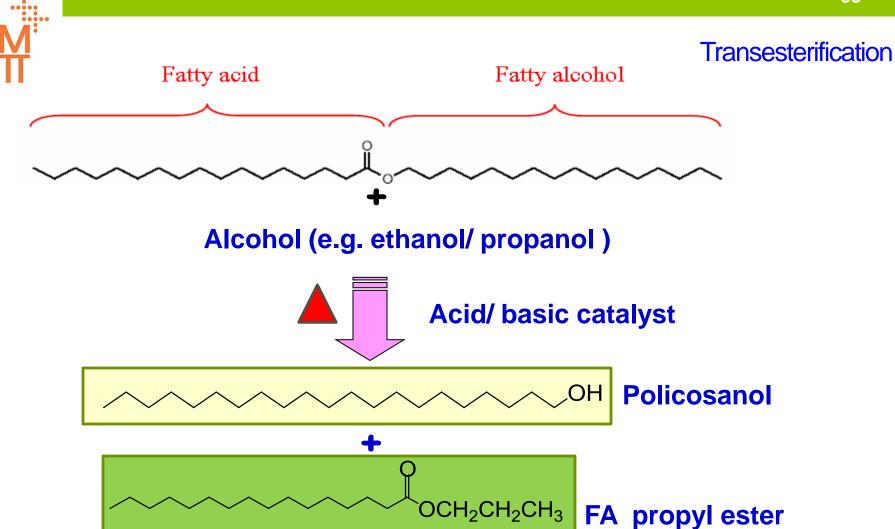
- Irmak, et al, 2006 "Policosanol contents of beeswax, sugar cane and wheat extracts", Food Chem, 95: 312-318.
- Granja, et al, 1999, "Mixture of higher primary aliphatic alcohols, its obtention from sugar cane wax and its pharmaceutical uses", US Patent 5856316

Policosanol maintains excellent stability in

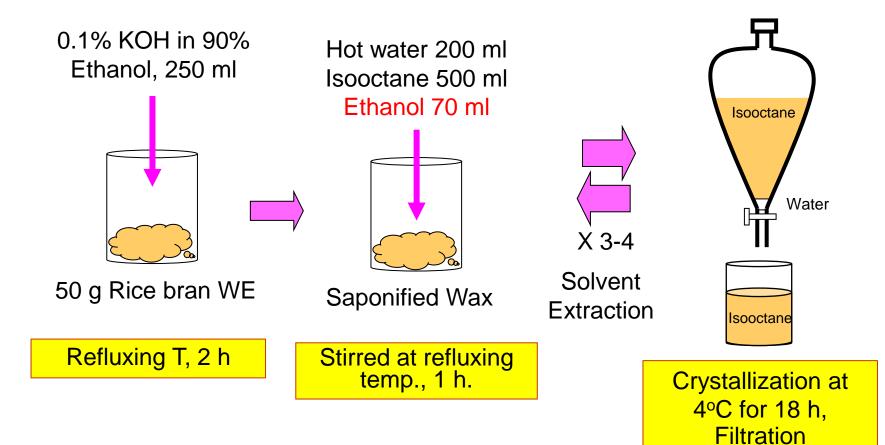
- Hair-, nail and skin-care formulations, and
- Delivers antimicrobial, emollient and sebumregulating properties

- Majeed, et al., 2007, "Compositions and methods containing high purity of fatty alcohol C₂₄ to C₃₆ for cosmetic applications", US Patent 2007/0196507 A1
- Majeed, et al., 2007, "Commercially viable process for high purity of fatty alcohol C₂₄ to C₃₆ and its cosmetic application for skin hair and nails ", US Patent 7,217,546 B1



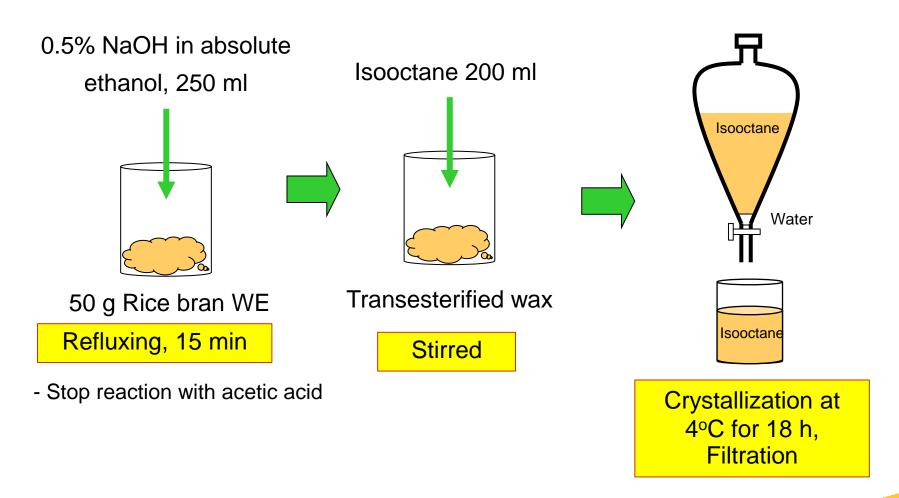

Production of Policosanol

Saponification


The Present Study

To compare the methods for splitting the policosanol from rice bran WE:

- Extraction time
- Composition
- Yield



Preparation of policosanol by saponification

Preparation of policosanol by transesterification

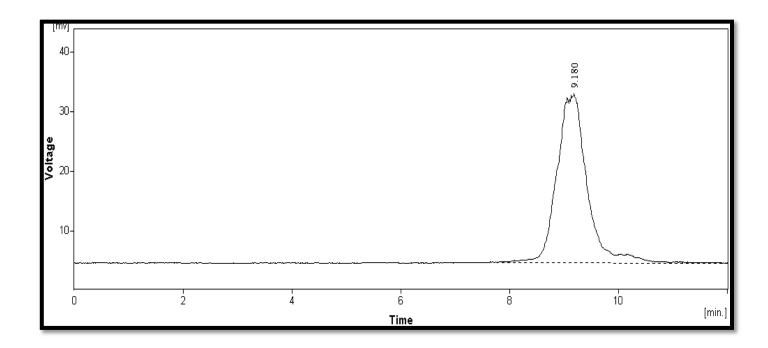


Fig. 8 HPSEC chromatogram of policosanol separated on a 100-Å Phenogel column using 0.25% acetic acid in toluene as mobile phase.

Acetylation of policosanol

 Policosanol was acetylated with ethyl acetate by using NaOH as catalyst in micro-reactor as described by Kaewkool and Krisnangkura.

GC Analysis

- Policosanol acetate was analyzed on GC-17A equipped with FID and split/splitless injector by using BPX35 column (35% Phenyl polysilphenylene-siloxane; 0.25 mm., ID. X 30 m.,L x 0.25 mm., d_f)
- Column temperature was set at 200°C x 2 min then increased to 350°C at 4°C/min; injector/detector, 360°C.

Kaewkool, P. and Krisnangkura, K., 2010, "Transesterification/acetylation of long chain alcohols with alkyl acetate," Chem Physics Lipids, 163: 685-688.

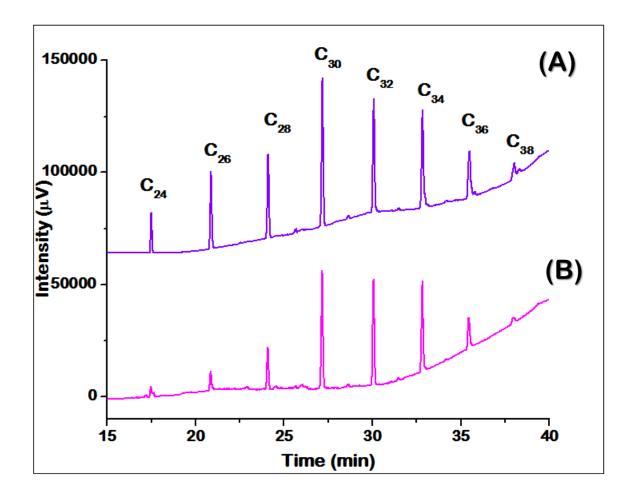


Fig. 9 GC chromatogram of policosanol prepared by saponification (A) and transesterification (B).

Table 4 Comparison of policosanol prepared by saponification and transesterification.

Fatty alcohol	Content (%)		
	Saponification	Transesterification	
Tetracosanol (C ₂₄)	5.09	2.41	
Hexacosanol (C ₂₆)	11.37	4.69	
Octacosanol (C ₂₈)	12.81	9.76	
Triacontanol (C ₃₀)	22.85	27.44	
Dotriacontanol (C ₃₂)	17.44	24.38	
Tetratriacontanol (C ₃₄)	17.03	22.08	
Hexatriacontanol (C ₃₆)	10.29	8.45	
Octatriacontanol (C ₃₈)	3.13	0.79	
% Yields ($Yield = 100 \frac{w_{policosanol}}{w_{wax}}$)	3.2	31.45	
% Purity	98.2	95	
Extraction & purification time (h)	66	18	



Conclusion

- ❖ Transesterification was more effective for releasing of policosanol from RBW than saponification. (2 h vs. 15 min reaction time)
- Gas chromatographic characterization of the policosanol as the acetate derivatives showed that the composition of policosanol prepared by transesterification was differ from that prepared by the widely accepted saponification method.
- The extraction of policosanol from the transesterification reaction medium was much simpler and gave higher yield.

Transesterification Purification

Policosanol

CRBW

Acknowledgement

The Agricultural Research Development Agency (Public Organization)

The Thailand Research Fund (TRF)

The Commission on Higher Education

E-mail: kornkanok.ary@kmutt.ac.th