

Disclaimer statement

- The following slides are intended for educational purposes only and do not replace independent professional medical judgment
- Statements of facts and opinions expressed are those of the individual presenters and, unless expressly stated to the contrary, are not the opinion or position of the Malaysian Society of Gastroenterology and Hepatology (MSGH)
- Webinar-related materials are not to be used for the promotion of commercial products
- All webinar materials are the sole property of the MSGH and cannot be published, copied, or disseminated without prior approval
- Please acknowledge "Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD): A New Name For An Old Foe http://msgh.org.my"

Metabolic Dysfunction associated Fatty Liver Disease (MAFLD) Case Presentation

> Dr Chuah Kee Huat University of Malaya

Acknowledgement

• The two cases used in this presentation are courtesy of Professor Dr Chan Wah Kheong.

- 48 years old gentleman
- DM, Dyslipidemia, Hypothyroidism
- On Vildagliptin 50 mg/Metformin 500 mg twice daily, Repaglinide 2 mg three times daily, Simvastatin 5 mg at night, L-thyroxine 200 mcg daily
- Referred for persistently deranged liver profile and fatty liver on ultrasonography
- Alcohol intake during occasions only in small amounts
- No other medications

- BP 110/80 mmHg
- Physical examination unremarkable
- Weight 85.5 kg, Height 1.69 m, BMI 29.9 kg per m²
- Hb 13.8 g/dl, WBC 5.2 x 10⁹/L, Platelet 168 x 10⁹/L
- Albumin 36 g/L, Bilirubin 12 μmol/L, ALT 118 U/l, AST 87 U/L, GGT 158 U/L, INR 1.1
- Creatinine 78 mmol/L
- HbA1c 7.3%, TG 1.9 mmol/L, LDL 2.8 mmol/L
- HBsAg not detected, anti-HCV not detected

MAFLD/ NAFLD – Assessment

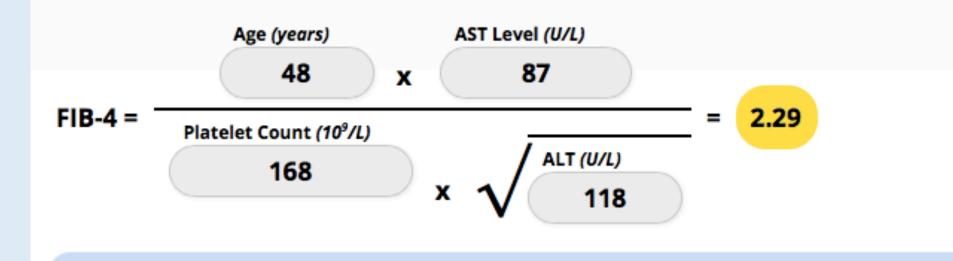
Assessment	Result	Action		
Blood tests (e.g. ALT and AST)	Normal ALT and AST	Repeat ALT and AST annually		
	Elevated ALT and AST*	 US abdomen to diagnose fatty liver/exclude focal liver lesion Repeat ALT and AST after 3-6 months 	 Exclude other causes of liver disease Consider referral to Gastroenterologist / Hepatologist 	

* Exclude possibility of drug-induced liver injury.

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; US: ultrasound.

References: 1. Clinical Practice Guidelines Management of Type 2 Diabetes Mellitus (6th Edition)

NAFLD – Assessment


Assessment	Result		Action		
Fibrosis-4 scoring	Fibrosis-4 index <1.3		Repeat every 2-3 years		
	Fibrosis-4 index ≥1.3		Refer for liver stiffness measurement	Consider referral to Gastroenterologist / Hepatologist	
	FIB-4 =Age (years) x AST (U/L)				
	110-4 -	Platelet cou	ount (x 10 ^{9/L}) x ALT (U/L) ^{1/2}		
	FIB-4		Interpretation		
	<1.3	Low risk for adva	anced fibrosis		
	≥ 1.3 Intermediate to high risk for advanced fibrosis				

References: 1. Clinical Practice Guidelines Management of Type 2 Diabetes Mellitus (6th Edition). 2. Castera L, et al. Gastroenterology. 2019;156(5):1264-1281

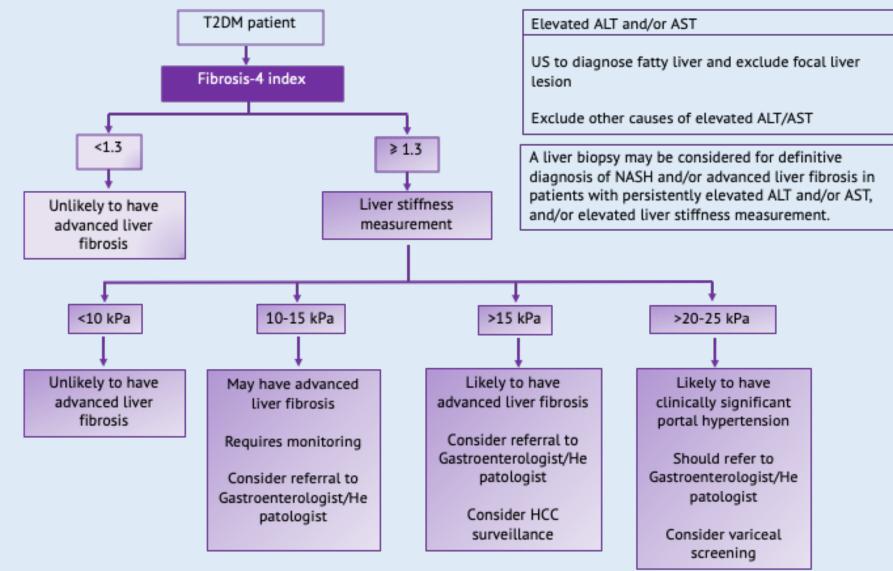
Fibrosis-4 (FIB-4) Calculator

🗷 Share

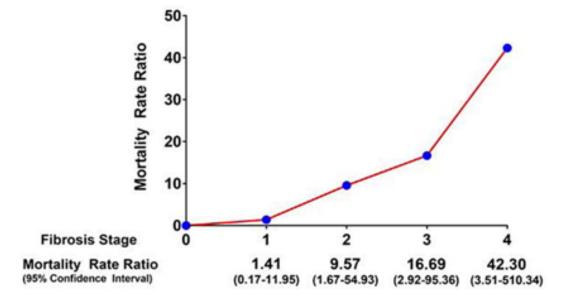
The Fibrosis-4 score helps to estimate the amount of scarring in the liver. Enter the required values to calculate the FIB-4 value. It will appear in the oval on the far right (highlighted in yellow).

Fibroscan (18/8/2017)

- Valid measurements: 10
- Total measurements: 10
- IQR/median: 15%
- LSM: 51.4 kPa
- CAP: 358 dB/m

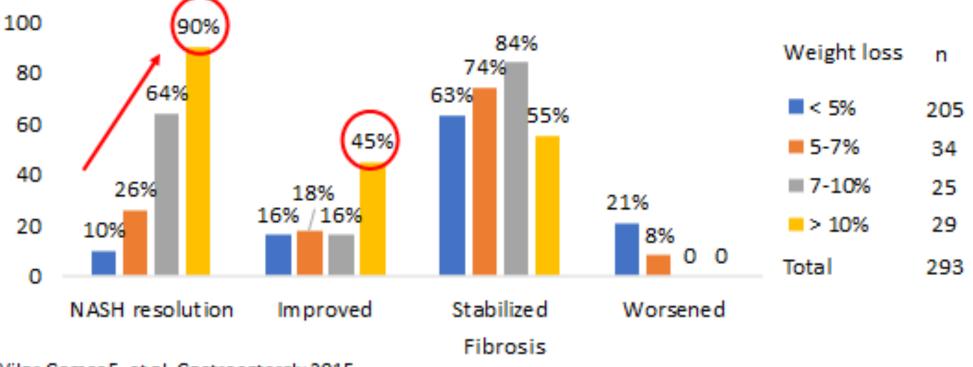

oScan	PPUM ENDOSCOPY LEMBAH PANTAI 59100 KUALA LUMPUR MALAYSIA	8/18/2017 2.21.57 PM
юя 18	CAP (dB,/m) MEDIAN 358 51.4	IGR Exam M (Liver) 7.5 Operator : CHAN WAH KHEONG IGR/ med. Valid measurements : 10 15 %
80-		
00.000		
operator. The values obtained must) - 2.0.5 management of patients with liver disease. Measureme be interpreted by a physician experienced in dealing with nt, the number of valid measurements and their scatter. Pr	liver disease,

Liver stiffness measurement


Liver stiffness (kPa)*	Interpretation	Action
< 10	Unlikely to have advanced fibrosis	
10-15	May have advanced liver fibrosis	 Requires monitoring e.g. repeat in 1 year Consider referring to Gastroenterologist / Hepatologist
> 15	Likely to have advanced liver fibrosis	 Should be considered for HCC surveillance Consider referring to Gastroenterologist / Hepatologist
> 20-25 (+/- presence of thrombocytopaenia)	Likely to have clinically significant portal hypertension	 Should be considered for HCC surveillance and variceal screening Requires referral to Gastroenterologist / Hepatologist

*Values obtained by transient elastography. kPa: kilopascals; HCC: hepatocellular carcinoma. Adapted from Wong VW, et al. Gut. 2019;68(11):2057-2064.

Assessment of NAFLD in patients with T2DM


Fibrosis stage is the single most important predictor of liver related mortality

Dulai et al, Hepatology 2017

- Given advice on diet, exercise and weight loss ≥10%
- Stopped repaglinide
- Empagliflozin 25mg daily
- Silymarin 140 mg three times daily

Lifestyle intervention in NAFLD

Vilar-Gomez E, et al. Gastroenteroly 2015.

RCT of silymarin for the treatment of biopsy-proven NASH

• Higher proportion of patients in the silymarin group had fibrosis improvement (22.4%) compared with the placebo group (6.0%; p=0.023).

Chan WK, et al. Clin Gastroenterol Hepatol 2017

Single arm study of empagliflozin for the treatment of biopsy-proven NASH

 Empagliflozin resulted in significantly greater improvements in steatosis (67% vs. 26%, p=0.025), ballooning (78% vs. 34%, p= 0.024), and fibrosis (44% vs. 6%, p = 0.008) compared with historical placebo.

Lai LL, et al. Dig Dis Sci 2019

OGDS for variceal screening

- Large esophageal varices with red wale marking and portal hypertensive gastropathy
- Endoscopic variceal ligation performed and started on propranolol

Follow-up

- After 1 month
- Weight 82 kg (baseline 85.5 kg; TBWL 4.1%)
- Liver profile improved, HbA1c 6.9, lipid profile normalized

Fibroscan (17/7/2020)

- Valid measurements: 10
- Total measurements: 10
- IQR/median: 20%
- LSM: 34.4 kPa
- CAP: 244 dB/m

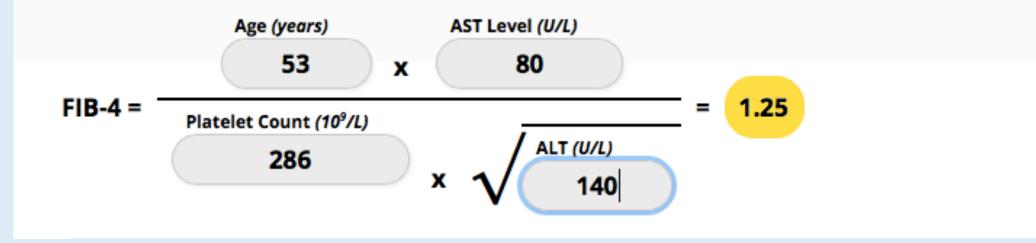
		UNIVERSITY MALAY	SPECIALIST CENTRE		
oSca	ດ້				17/07/20
0200					12:11:4
		CAP (dB/m)	E (kPa)		
	IGR	MEDIAN	MEDIAN	IGR	Exam M (Liver)
	58	01111	011.11	6.9	Operator : PROF CHAN WAH K Valid measurements : 10
		244	344	IQR/med 20%	Total measurements : 10
		- I I	01.1	LU /o	
-	20-		20-		
#1	30- 40-	2 H	30-	11.0	30-
2	50-	4	50-	and the second se	50-
12 10 Cat	70- 237 dE	/m 39.9 kFa	70- 223 dB/m 29.2	leta l	70- 238 d8/m 37.3 365
40 60 60	80- (mm) (ms)> 0 20 40 60 80	(mm) (ms) > 0 2(nm) (ms)> 0 20 40 6
	20-		20-	and the second se	20-
#5	40-	#6	40-	and the second sec	x0- x0-
	50- 60-		50- 60-	and the second se	50- 20-
	70- 311 d8	/m 33.9 kfa	70- 249 d8/m 30.0	kPa	70- 275 dB/m 412 473
40 60 60	(mm) (ms)> 0 20 40 60 80	(mm) (ms)> 0 20		10 (ms) > 0 20 40 0
	20-	# 10			
NG.	40-				
1 8 3	50- 60-	2 1.5 1 2 -			
Hra Contraction	70- 216 dB	m 36,1 kPa			
0 40 60 60	(mm) (ms	> 0 20 40 60 80			
(SN:F80470) - Probe	M (SN:76017) -	G3.2			
al device intended at operator. The values	an aid for the	management of patients w	ith liver disease. Measuren in experienced in dealing wi	nents should be	echoser
omplete medical rece to the manufacturer's	recommendation	t, the number of valid measure.	in experienced in dealing wi urements and their dispersion	on. Probes must	Ceriosei

Repeat OGDS after 6 months

 Small esophageal varices with scarring from previous endoscopic treatment

Follow-up

- HCC surveillance with US and AFP 6-monthly
- After 8 months
- Weight 74.5 kg (baseline 85.5 kg; TBWL 12.9%)
- Liver profile normalized, HbA1c 6.5, lipid profile normalized

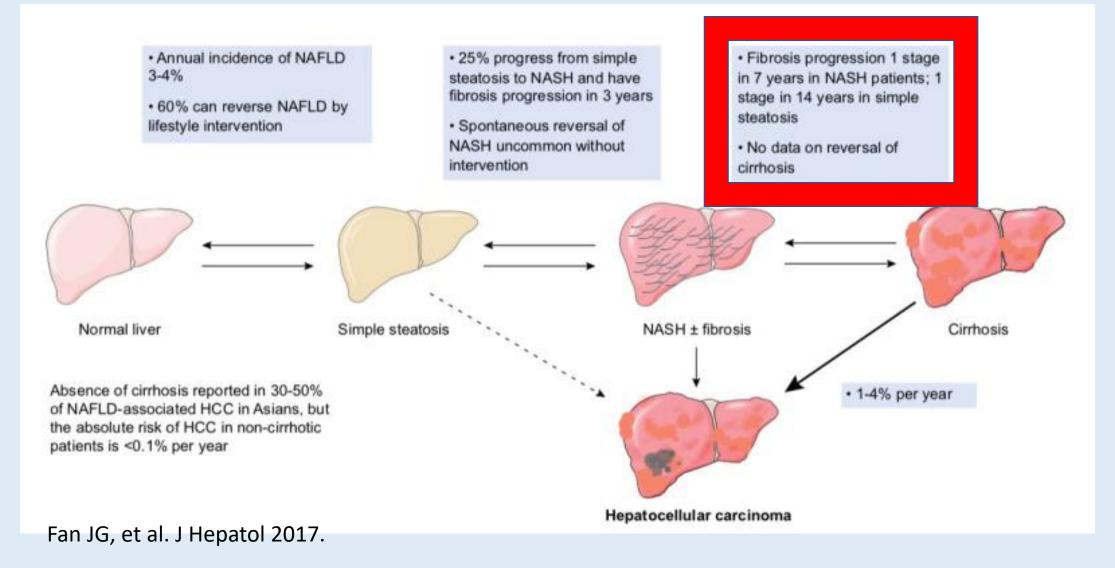

- 53 years old Chinese lady
- Dyslipidemia on simvastatin 20 mg at night
- No alcohol or traditional medication
- Referred for abnormalities in liver profile

- BMI 28 kg/m²
- BP 140/88 mmHg
- Albumin 40 g/L, Bilirubin 7 μmol/L, ALP 115 U/L, ALT 140 U/L, AST 80 U/L, GGT 98 U/L
- Platelet 286 x 10⁹/L
- Other blood results:
 - TG 0.9 mmol/L, TC 4.4 mmol/L, HDL 1.33mmol/L, LDL 2.66 mmol/L
 - FBS 5.9 mmol/L, HbA1c 5.4 %
 - HBs Ag negative, anti-HCV negative
- US showed fatty liver

Fibrosis-4 (FIB-4) Calculator

🔀 Share

The Fibrosis-4 score helps to estimate the amount of scarring in the liver. Enter the required values to calculate the FIB-4 value. It will appear in the oval on the far right (highlighted in yellow).


Follow-up

- After 6 months of lifestyle intervention, her weight remained the same
- ALT 111 U/L, AST 62 U/L, GGT 77 U/L
- Liver biopsy
- Started on vitamin E 800 IU/day
- After 6 months, her weight remained the same
- ALT 42 U/L, AST 39 U/L, GGT 45 U/L

Histology

Steatosis 0 1 2 3 Inflammation 0 1 2 3 Ballooning 0 1 2 Fibrosis 0 1 2 3 4

Natural history of NAFLD

• Thank you

