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ABSTRACT 

 Among the eight marine microalgae used in this 
study, Nannochloropsis sp. exhibited the fastest growth rate 
of 1 x 107 cells ml-1 and a highest protein content of 220 mg 
L-1. The carbohydrate content was maximum on the 15th day 
of growth in Dunaliella sp. (120 mg L-1). Tetraselmis sp. 
showed the maximum amount of total chlorophyll (6mg L-1) 
and chlorophyll ‘b’ (0.9 mg L-1) on the 25th day, whereas 
chlorophyll ‘a’ (5mg L-1) and carotenoids (2.5mg L-1) were 
highest on the 20th day. The maximum lipid content was 
observed in Tetraselmis sp. (~800µg L-1). Highest amount of 
polyunsaturated fatty acid (PUFA) content was observed 
maximum in Nannochloropsis sp., eicosapentaenoic acid 
(EPA) in Tetraselmis sp. and docosahexaenoic acid (DHA) 
in Isochrysis sp. The results of this study reveal that 
Nannochloropsis sp., Tetraselmis sp. and Isochrysis sp. 
have good nutritional value.  

_____________________________________________________________________________________________  

Introduction 

 Algae which are very simple chlorophyll-containing (Bold and Wynne, 1985) photosynthetic organisms play 

a key role in the productivity of ocean and constitute the basic of the marine food chain (Hillison, 1977). Microalgae 

are well known for their high nutritional values including protein, carbohydrate, lipid, essential amino acids, 

polyunsaturated fatty acids (PUFAs), vitamins, minerals and non-caloric dietary fibres. The beneficial value of 

microalgae could be transferred to animals through the food chain (Kumar and Singh, 1976). They are utilized in 

aquaculture as live feed for bivalve larvae and spat (Knauer and Southgate, 1999) and have wide applications in 

biodiesel (Chisti, 2007; Hu et al. 2008; Schenk et al. 2008), health food (Natrah et al. 2007; Plaza et al. 2008), animal 

feed and fertilizers (Spolaore et al. 2006), nutraceuticals and pharmaceuticals (Shahidi and Wanasundara, 1998; 

Horrocks and Yeo, 1999) and bioplastics (Murphy, 2006). Productivity and lipid composition of microalgae depend on 

their growth phase (Xu et al. 2008) and composition (Valenzuela-Espinoza et al. 2002), irradiance (Thompson et al. 

1993), salinity (Renaud and Parry, 1994) and temperature (Renaud et al. 2002) of the medium. Microalgae produce a 

variety of lipids of nutritional importance. Long chain ω-3 polyunsaturated fatty acids (PUFAs), in particular 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential for the growth, development and 

increase in the survival percentage of larvae of both crustaceans (Kanazawa et al. 1985) and marine finfish (Reitan et 

al. 1997). Microalgae are the food for rotifers (Watanabe, 1983), artemia (Lavens et al. 1995), marine fish larvae 

(Eamta et al. 2003), shrimp (Cavalli et al. 1999) and molluscs (Knaur and Southgate, 1999). 

 

 Algal biomass can play an important role in solving the problem between the production of food and that of biofuels 

in the near future. The biomass can be fed to an anaerobic digester for methane production (Golueke et al. 1957; 

Gunaseelan, 1997; Yen and Brune, 2007), and the residual biomass from such processes can potentially be used as 

a fertilizer, soil amendment, or feed for fish or livestock (Mulbry and Wilkie, 2001; Mulbry et al. 2005). Microalgae rich 

in carbohydrates and proteins can be used as carbon sources for fermentation as a potential substrate for bioethanol 

production (Subhadra and Edwards, 2010; Packer, 2009). It is also possible to produce protein-rich feed for animal 
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and nutritional supplement for human consumption. Poly-unsaturated fatty acids (PUFAs) are a potential co-product 

of biodiesel production from microalgae. PUFAs of vegetable origin are alternatives to fish oils and other oils rich in 

omega-3 fatty acids. The composition of the algal biomass with regards to lipids, carbohydrates and proteins will 

greatly determine its overall value. In this present study, biochemical composition of eight native marine microalgae 

was evaluated at different growth phases, characterizing their chemical profile under standardized conditions. 

 

Materials and Methods 

Algal Cultures 

 Eight marine algal cultures, viz., Chaetoceros sp., Chlorella sp., Dicrateria sp., Dunaliella sp., Isochrysis sp., 

Nannochloropsis sp., Synechococcus sp. and Tetraselmis sp. were used in the present study. Cultures of each 

species were grown in triplicates in 5L conical flasks containing 3L of sterile f/2 culture medium (Guillard and Ryther, 

1962). Algal cultures were established by inoculating 100 ml of a mother culture (2 × 106 cells ml-1) growing in 

exponential phase. These were maintained in unialgal condition in the laboratory and were kept under sufficient light 

(2000 lux) and temperature (26-28°C) conditions with a pH of 8.2±1 (Guillard, 1975). 

 

Growth Measurements 

 The growth of the microalgae was measured by direct counting of the cells using a haemocytometer 

(Neubauer). The mean value of four counts was taken for each sample. Chlorophylls and carotenoids were quantified 

using the equations by Jeffrey and Humphrey (1975). 

Biochemical  analysis 

 Algal cultures (50 ml for each analysis) were taken on the 5th, 10th, 15th, 20th, 25th and 30th days of growth 

and centrifuged at 10,000 rpm for 10 minutes. The pellets were washed thoroughly with distilled water and 

immediately stored at − 70°C. The biochemical composition of the microalgae was estimated by following the 

standard methods for total protein (Dorsey et al. 1978) and total carbohydrate (Pons et al. 1981). All the studies were 

performed in triplicate. 

 

Extraction of lipid and PUFA analysis 

Cells were harvested by centrifugation (10,000 rpm for 10 min.) and lyophilized. The dried cells were then 

extracted with chloroform: methanol by the method of Bligh and Dyer (1959) and the lipid extracts thus obtained were 

transmethylated with sodium methoxide (1% w/v) using the method described by Carreau and Dubacg (1978). The 

methyl esters of fatty acids were analyzed by GC (CHEMITO GC 8610) equipped with a Flame Ionization Detector 

and a Column BPX-70 (50% cyanopropyl, 50% methylsiloxane), injection port 250º, detector port 260º and oven 

starting temperature 160º and increase by 7.5º per minute, the final oven temperature being 240º. Injections were 

made in the split mode (split ratio, 1:30; sample size, 0.2 μl). N2 was used as the carrier gas. The fatty acids were 

identified by comparing with the retention times of known internal standard (17:0 fatty acid). The data were collected 

using Winchrom Software. 

 

Statistical analysis 

Comparison between species, between days and between replications was done using 3 way ANOVA based on the 

growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, 

carbohydrates and proteins. Students t test was applied to determine which two species/days differed significantly 

using trellis diagram.  The parameters, total chlorophyll, carotenoids, carbohydrates and proteins were used in 

discriminating between the 8 species in multivariate discriminant analysis. 

Results and discussion 

Growth 

Eight marine microalgae such as Chaetoceros sp., Chlorella sp., Dicrateria sp., Dunaliella sp., Isochrysis sp., 

Nannochloropsis sp., Synechococcus sp. and Tetraselmis sp. were grown in f/2 medium. Among the eight different 

cultures tested, Nannochloropsis sp. exhibited the fastest growth rate with 1073 x 104 cells ml-1 followed by 
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Synechococcus sp. (994 x 104 cells ml-1), Isochrysis sp. (924 x 104 cells ml-1),  Chlorella sp. (936 x 104 cells ml-1) and 

Tetraselmis sp. (864 x 104 cells ml-1) on the 25 th day (Fig. 1A). Similar values were observed in the cell count of 

Dicrateria sp., Isochrysis sp., and Tetraselmis sp. on the 10th day, Dunaliella sp. and Nannochloropsis sp. on the 5th 

day, that of Chaetoceros sp. and Tetraselmis sp. on the 5th day and that of Chaetoceros sp.  and Isochrysis sp. on 

the 15th day (P>0.05) of growth (Table 1). According to Huerlimann et al.  (2010), when grown in f/2 medium, 

Nannochloropsis sp. showed a growth of ~2.5 x 107 cells ml-1, Isochrysis sp., ~6 x 106 cells ml-1 and Tetraselmis sp., 

~1.9 x 106 cells ml-1. Abu Rezq et al.  (1999) has reported maximum cell density of Nannochloropsis as ~32 x 106 

cells ml-1, Tetraselmis, ~5 x 106 cells ml-1 and Isochrysis, ~4.5 x 106 cells ml-1.  T. gracilis in Conway medium showed 

highest cellular density values (1.71x109 cells L-1) as reported by Lourenço et al.  (1997), probably because Conway 

medium was more nutritive than f/2- Guillard. Chaetoceros gracilis using FeNS as the growth medium showed 95- 

6,415x106 cells L-1 as recorded by Yamashita and Magalhães (1984). According to Becker (1995) one of the best 

parameters to monitor microalgae production is the estimation of growth over a certain period of time. In lab grown 

cultures, microalgae biomass reaches a peak level after 25th day and then starts decreasing (Dayananda et al. 2007). 

As it happens in any organism, microalgae biomass and chemical composition can vary according to environment 

conditions and the age of the culture (Lourenço et al. 1997; Renaud et al. 1999; Araújo., et al.  2005).  

 

 

Figure 1. A and B. Biochemical composition of eight marine microalgae grown in batch culture using f/2 medium  (A) Cell 

Count (B) Total chlorophyll (C) Chlorophyll a (D) Chlorophyll b (E) Carotenoids (F) Protein (G) Carbohydrate 
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Figure 1. C and D. Biochemical composition of eight marine microalgae grown in batch culture using f/2 medium  (A) Cell 

Count (B) Total chlorophyll (C) Chlorophyll a (D) Chlorophyll b (E) Carotenoids (F) Protein (G) Carbohydrate 
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Figure 1. E and F. Biochemical composition of eight marine microalgae grown in batch culture using f/2 medium  (A) Cell 

Count (B) Total chlorophyll (C) Chlorophyll a (D) Chlorophyll b (E) Carotenoids (F) Protein (G) Carbohydrate 
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Figure 1.G. Biochemical composition of eight marine microalgae grown in batch culture using f/2 medium  (A) Cell Count 

(B) Total chlorophyll (C) Chlorophyll a (D) Chlorophyll b (E) Carotenoids (F) Protein (G) Carbohydrate 

 

Three way analysis of variance applied to determine the significance of the difference between days, species and 

between replications observed that high significant difference exists between days of experiment viz. 5, 10, 15, 20, 25 

and 30, between species and between replications for total chlorophyll, cell count, chlorophyll a, chlorophyll b, 

carotenoids, proteins and carbohydrates (P<0.01) except for replications based on chlorophyll b, carotenoids and 

proteins (P>0.05) (Table 1).       

Chlorophyll is one of the cellular compounds that is used for estimating biomass of microalgae in culture and can be 

used to measure growth. The highest total chlorophyll content was observed in Tetraselmis sp. (6mg L-1) followed by 

Chlorella sp. (3.2 mg L-1), Dunaliella sp. (2.8 mg L-1) and Nannochloropsis sp. (2.5 mg L-1) (Fig. 1B). Total chlorophyll 

concentration in Chlorella sp., Chaetoceros sp. and Dicrateria sp.  did not differ much on the 5th day. Similarly 

Dunaliella sp. and Tetraselmis sp.  on the 15th day and Chaetocerous sp. and Synechococcus sp. on the 25th day had 

almost same concentration of total chlorophyll (P>0.05) (Table 1). 

Chlorophyll ‘a’ content differed significantly between all species on all the days (P<0.05). Tetraselmis sp. (5 mg L-1) 

reported the maximum amount of chlorophyll ‘a’ followed by Chlorella sp. (3 mg L-1) (Fig. 1C). The highest chlorophyll 

‘b’ content was observed in Tetraselmis sp. (0.9 mg L-1) followed by Chlorella sp. (0.85 mg L-1) and Dunaliella sp. 

(0.82 mg L-1) (Fig. 1D). Chlorophyll ‘b’ concentration of Chlorella sp., Dicrateria sp., Dunaliella sp., Isochrysis sp., 

Nannochloropsis sp.  and Synechococcus sp.  did not differ significantly on the 5th day. There was also no significant 

difference in chlorophyll ‘b’ values in Synechococcus sp. and Nannochloropsis sp. on the 15th day, Chaetoceros sp. 

and Nannochloropsis sp.  on the 20th day and between Chaetoceros sp. and Isochrysis sp., and Synechococcus sp. 

and Dicrateria sp. on the 30th days of growth (P>0.05) (Table 1). Carotenoid content differed significantly between all 

species on all the days (P<0.05). Dunaliella sp. (2.9mg L-1) showed high amount of carotenoids followed by 

Tetraselmis sp. (2.6mg L-1) and Chlorella sp. (2.4mg L-1) (Fig. 1E). These values were higher than those found by 

Lourenço et al.  (1997) who cultivated T. gracilis in Conway medium (1.51-3.57 mg L-1). High chlorophyll ‘a’ values 

may occur due to high cell density, which diminishes irradiation and lead to increased production of chlorophyll ‘a’ 

(López- Muñoz et al. 1992; Sauodi-Helis et al. 1999; Valenzuela-Espinoza et al. 2002). The results of this study 

indicate that algal biomass increased proportionally with growth rate. This confirms that there is a good relationship 

between growth rate and efficient photosynthesis during the growth of the culture. On the other hand, chlorophyll 

content does not depend only on the cellular density, but also on the irradiance. The high cellular density of the 

culture produces shading which reduces the irradiance into the culture, thereby increasing the chlorophyll content per 

cell (Lopez-Munoz et al. 1992).                          
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Biochemical composition 

In the present study the highest protein content was observed in Dunaliella sp. (280 mg L-1) followed by Tetraselmis 

sp. (200 mg L-1) on the 25th day (Fig. 1F). Nannochloropsis sp. was observed to have 220 mg L-1 of protein content 

on 20th day. Protein content differed significantly between all species on all the days (P<0.05). Also the protein 

content in all the cultures showed a decline on the 30th
 day indicating the end of their growth period. The values were 

lower than those obtained by Fabregas et al.  (1985), where the mass culture of T. suecica was found to have a 

maximum protein value of 306 mg L-1 in logarithmic culture phase. Koening et al.  (1990) reported that the soluble 

protein was 310 mg L-1 in T. tetrathele when grown in organic fertilizer medium. The protein content of Chlorella 

vulgaris was reported to be 50% (Becker, 2007). The high protein content of various microalgal species is one of the 

main reasons to consider them as an unconventional source of protein (Soletto et al. 2005), which constitutes an 

important quality for using the marine microalgae as a single cell protein (SCP) source.                                                                                                           

Carbohydrates have been found as intermediary reserves in some algae, due to the fact that they are required when 

nitrogen becomes limited in the lipid synthesis. Carbohydrate tends to accumulate in the stationary phase (Brown et 

al. 1993; Zhu et al. 1997) of algal growth. The highest carbohydrate content was observed in Dunaliella sp. (120 mg 

L-1), Tetraselmis sp. (115 mg L-1)   and Nannochloropsis sp. (100 mg L-1) on 15th day (Fig. 1G). Carbohydrate 

concentration of Tetraselmis sp., Nannochloropsis sp.  and Synechococcus sp. on the 5th day, that of Chaetoceros 

sp. and Chlorella sp. on the 10th day, of Nannochloropsis sp. and Dunaliella sp.  on the 20th day, of Isochrysis sp. and 

Chaetoceros sp. on the 25th day and Isochrysis sp.  and Chlorella sp.  on the 30th day did not show significant 

difference (P>0.05) (Table 1).  

A large part of the data available on chemical composition of marine microalgae has been obtained  using f/2 culture 

medium (Guillard, 1975; Enright et al. 1986; Brown et al. 1998; Mc Causland et al. 1999; Renaud et al. ,1999; 

Knuckey et al. 2002; Lafarga-De la Cruz et al. 2006). Hence in the present study the marine algae were grown in 

batch culture in f/2 medium to analyze the biochemical composition with respect to different stages of growth. It has 

been observed that in Nannochloropsis sp. the total chlorophyll, chlorophyll a and carotenoids increased in the same 

rate as that of growth, but the peak values were obtained on the 20th day unlike the cell count which was on the 25th 

day. Protein showed a stationary phase between 10th and 20th day whereas for carbohydrates the stationary period 

was observed between 20th and 25th day (Fig. 2).  In Synechococcus sp. the pigment concentrations were in the 

same pattern as observed for Nannochloropsis sp. whereas protein and carbohydrates showed a stationary phase 

beyond the 25th day after a decline at the end of the exponential phase, on 20th day. Protein concentration remained 

stationary at 1250 mg/l in the initial phase up to the 15th day (Fig. 2). In Tetraselmis sp. total chlorophyll followed the 

same pattern as indicated by cell count whereas chlorophyll ‘a’ and carotenoids exhibited a pattern similar to that of 

Nannochloropsis sp. with a sharp decline on the 15th day. Protein concentration remained almost stationary during 

the exponential phase of growth with peak value coinciding with the growth peak value, on the 25th day, whereas 

carbohydrates showed a steady increase with the growth reaching the peak value on the 20 th day (Fig. 2). In 

Chaetoceros sp., pigments as well as proteins and carbohydrates followed the same growth pattern with a sharp 

decline on the 15th day of growth and with a lag period of 5 days to peak growth as observed in the case of 

Tetraselmis sp. (Fig. 2). In  Dunaliella sp., the decline phase of growth started from the 25th day whereas pigments 

showed reduction from the 15th day onwards except carotenoids which showed the same trend as that of growth. 

Protein showed a stationary phase after a peak value on the 25th day while carbohydrate was maximum on the 20th 

day with a steep gradient of increase before 20th day and a low gradient of decrease after 20th day towards the death 

phase (Fig. 2). In Chlorella sp., the three pigments followed the same trend as that of growth with a stationary phase 

after 10th day, up to the 20th day followed by a decline. Carbohydrates showed a steep gradient from the initial phase 

to a peak value on the 25th day followed by sharp decrease on the 30th day (Fig. 2). In Isochrysis sp., the three 

pigments were maximum on the 10th day followed by a sharp decrease to the value of 0.5 mg/l on the 15th day 

afterwards reaching the death phase. Protein was nearly doubled after 5 th day which continued at the same level till 

the maximum growth is attained where as carbohydrates reached the maximum on the day of maximum growth 

maintaining the level between 30 and 40 during the initial and exponential phase of growth (Fig. 2). In Dicrateria sp., 

the pigments were initially found to be moderately increasing, with a minimum value on the 15th day followed by a 

steady increase to the maximum value on the 20th day and a stationary phase up to the 25th day where the maximum 

growth is attained. Protein concentration of this species exhibited a pattern which is different from all other species 

with a bimodal peak on the 10th and 25th day with a sharp decline to the minimum value on the 15th day. 

Carbohydrates maintained a perfect positive correlation with growth pattern. Total chlorophyll, protein and 
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carbohydrates can be delineated as the optimal discriminative parameters effective enough to discriminate the 8 

species during their growth phases by multivariate discriminant analysis. In this analysis the algae such as Dunaliella 

sp., Nannochloropsis sp., Synechococcus sp. and Chlorella sp. were discriminated at different stages of their growth 

(Fig. 3). In batch culture system with sufficient amount of nutrients the synthesis of both protein and chlorophyll will 

increase, whereas, during nutrient limitation the concentration of carbohydrate and lipid will increase. This is in 

accordance with the report of earlier researchers that there is a coupling between protein and carbohydrates in algal 

cells, which also reflects the budget of carbon and nitrogen available to the cells (Geider et al. 1993; Turpin, 1991). 

According to Enright et al.  (1986), when the rate of cell division in a phytoplankton culture is limited by nutrients, cells 

alter their metabolism and convert energy to produce reserve substances.    

 

 
Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 
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Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 
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Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 
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Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 
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Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 

 



J. Algal Biomass Utln.  2016, 7 (3): 19-41                  Biochemical characterization of marine microalgae 

eISSN: 2229 – 6905 

31 
 

 
Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 
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Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 
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Figure 2 : Comparison between species, between days and between replications was done using 3 way ANOVA based on the 
growth measured by number of cells, concentration of total chlorophyll, chlorophyll a, chlorophyll b, carotenoids, carbohydrates and 
proteins 
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Figure 3: Multivariate discriminant analysis between the 8 species [(1) Chaetoceros sp., (2) Chlorella sp., (3) Dicrateria sp., 
(4) Dunaliella sp., (5) Isochrysis sp., (6) Nannochloropsis sp., (7) Synechococcus sp. (8) Tetraselmis sp. ] were used in 
discriminating  for Total chlorophyll, Carotenoids, Carbohydrates and Proteins 

 

Lipid and fatty acid profiles  

 

The highest lipid content was observed in Tetraselmis sp. (~800µg L-1) followed by Nannochloropsis sp. (~600µg L-1) 

and Isochrysis sp. (~500µg L-1), while Synechococcus sp. had the lowest lipid content (Fig. 4). In the present study 

Dunaliella sp. showed high amount of carotenoids on the 25th day whereas Tetraselmis sp. and Nannochloropsis sp. 

had the maximum on the 20th day. ß-carotene serves as an essential nutrient and has high demand in the market as 

a natural food colouring agent, as an additive to cosmetics and also as a health food (Raja et al. 2007)  with pro-

vitamin A activity (Baker and Gunther,  2004).  

 

Figure 4:  Lipid content of eight marine microalgae grown in batch culture using f/2 medium 
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Interestingly, the highest biomass productivity was observed for Tetraselmis sp. due to its large cell size, although it 

showed the lowest specific growth rate. Similar result was also reported by Huerlimann et al.  (2010). There have 

been many studies investigating the lipid content and fatty acid profiles of various microalgae during the late 

logarithmic or stationary growth phase using a single medium (Zhukova and Aizdaicher, 1995; Renaud et al. 2002; 

Martines-Fernandez et al. 2006; Natrah et al. 2007).  Quite a number of factors influencing the lipid content of 

microalgae have been proposed. They include nutrient deprivation (Mortensen et al. 1988), temperature (James et al. 

1989), photoperiod (Sicko-Goad and Anderson, 1991), pH (Cohen et al. 1988), growth rate (Sauodi-Helis et al. 1999), 

light quality (S´anchez Saavedra and Voltolina, 1994) and photon flux density (Sukenik et al. 1993).              

Fatty acid composition of the eight species of microalgae used in this study is shown in Table 2. Saturated fatty acid 

(SFA) content was higher in Tetraselmis sp. (59.68 mg g-1), Isochrysis sp. (39.64 mg g-1), Dunaliella sp. (37.57 mg g-

1) and Nannochloropsis sp. (34.61 mg g-1).  Monounsaturated fatty acid (MUFA) content was higher in Dunaliella sp. 

(41.86 mg g-1), Nannochloropsis sp. (31.93 mg g-1), Chlorella sp. (29.96 mg g-1), Isochrysis sp. (28.46 mg g-1) and 

Tetraselmis sp. (17.78 mg g-1). The highest amount of PUFA content was observed in Nannochloropsis sp. (33.39 mg 

g-1) followed by Isochrysis sp. (31.88 mg g-1) and Tetraselmis sp. (22.7 mg g-1). Palmitic acid, stearic acid, oleic acid 

and linoleic acid comprised 60 to 80% of the total lipids in Nannochloropsis sp., Isochrysis sp. and Tetraselmis sp. 

The highest amount of EPA was found in Nannochloropsis sp. (15.8 mg g-1) followed by Tetraselmis sp. (5.37 mg g-

1), while DHA was abundant only in Isochrysis sp. (12.26 mg g-1). Arachidonic acid was present in Tetraselmis sp. 

(2.05 mg g-1) and Nannochloropsis sp. (1.17 mg g-1). The findings reveal that palmitic acid was the major saturated 

fatty acid in all the algae. This is in accordance with previous reports by Patil et al.  (2007). The fatty acid distribution 

was in accordance with that of previous studies for Nannochloropsis sp., Isochrysis sp. and Tetraselmis sp.  (Ackman 

et al. 1968 ; Volkman et al. 1989 ; Reitan et al. 1994).                 

 

The main fatty acids found in Nannochloropsis sp. were palmitic acid, oleic acid, stearic acid and EPA. This study is 

in concurrence with Patil et al.  (2007) who has reported that Nannochloropsis oceanica is rich in EPA (23.4 mg g–1) 

and therefore has been proposed for its commercial production of EPA (Sukenik et al. 1993). Nannochloropsis sp. 

are widely used as food in aquaculture (Maruyama et al. 1986; Apt and Behrens, 1999). Isochrysis consisted of 

mostly palmitic, oleic, linoleic and DHA. Similar result was reported by Patil et al.  (2007) that DHA was abundant only 

in Isochrysis galbana (15.8 mg g–1). Fatty acid profile of Isochrysis sp. is in accordance with the earlier studies 

(Volkman et al. 1989; Shamsudin, 1992; Zhu et al. 1997). Lipid content of I. galbana culture grown in door ranged 

from 10 to 28% of dry weight (Brown et al. 1993; Molina Grima et al. 1994). In the present study Tetraselmis sp. 

showed high amount of palmitic acid, stearic acid, arachidic acid, oleic acid and linoleic acid. The fatty acid profile for 

Tetraselmis sp. was in accordance with those of earlier reports (Ackman et al. 1968; Volkman et al. 1989; Reitan et 

al. 1994; Patil et al. 2007), the EPA content being 5.37 mg g–1. Usually the relative EPA content of Tetraselmis sp. 

ranges between 4-8% (Dunstan et al. 1992; Lourenço et al. 1997; Renaud et al. 1999; Milke et al. 2004; Rivero- 

Rodríguez et al. 2007; Patil et al. 2007) or 13–14% (Tzovenis et al. 2009), but rarely exceeds 10% ( Patil et al. 2007).  

When considering biomass productivity and lipid content, Tetraselmis sp. can be considered as the best species in 

this study. The results of this study will aid aquaculture farmers in choosing microalgae for their nutritional value.  

  

Conclusion 

 

The study provides information on the chemical profile of eight native marine microalgae, which might be useful for 

the selection of suitable native species in aquaculture and bioenergy production. Since microalgae may be limited by 

one or more essential nutrients, a mixed algal culture supplies a better equilibrium of nutrient properties, contributing 

for a better success in aquaculture (Brown et al. 1997; Rico-Villa et al. 2006) probably because their combined 

nutrient is more likely to meet the nutritional requirements of the target species (Cerón-Ortiz et al. 2009). 

Nannochloropsis sp. and Tetraselmis sp. can be used as suitable feed for aquaculture from the 10-20th day of their 

growth. The size of Nannochloropsis sp. and its high PUFA content was found to be the best nutritional option for 

aquaculture. This study also identifies Tetraselmis sp. as the species of choice for carotenoids, biomass and lipid 

production.  
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Table 1 

 

Showing the significance of the difference between days, species and replications based on (a) Total chlorophyll (b) Cell count (c) Chlorophyll a (d) Chlorophyll b 

(e) Carotenoids (f) Proteins (g) Carbohydrates using 3way ANOVA 

source Total chlorophyll Cell count Chlorophyll A Chlorophyll B Carotenoids Proteins Carbohydrates d o f 

 F ratio F ratio F ratio F ratio F ratio F ratio F ratio Of F ratio 

Days (A) 14674.3** 43081.7** 11626.1** 3896.20** 13365.4** 84090.1** 3246.41** (5,70) 

Species (B) 26659.8** 8781.228** 18454.2** 4111.39** 8952.81** 241553.0** 7494.54** (7,70) 

Replications ( C) 6.4238** 2.4848* 3.5714* 1.9422 1.2784 0.8333 2.8116* (2,70) 

AB interaction 5668.40** 1365.36** 4429.75** 2092.34** 5247.80** 63475.1** 1709.71** (35,70) 

BC interaction 0.7895 1.2475 0.9694 1.2456 0.8401 1.5476 1.5476 (14,70) 

AC interaction 1.3036 0.9939 1.3214 1.2314 0.6136 1.6667 0.8063 (10,70) 

Error 0.000323 14.0857 0.0002563 0.000046158 0.00013428 9.6000 0.7558 70 

Total 493.154 31064900 312.977 15.6353 149.593 275117000 396554.0 143 

 

Table 2      Fatty acid profile (FA) (wt %) of Marine microalgae 

Fatty acid 

Structur

e 

Chaetoceros 

sp 

Chlorella 

sp 

Dicrateria 

sp 

Dunaliella 

sp 

Isochrysis 

sp 

Nannochloropsi

s sp 

Synechococcu

s sp 

Tetraselmis 

sp 

Saturated 

Lauric acid C12:0 0.11 0.06 0.2 0.24 0.19 0.15 0.4 0.27 

Myristic acid C14:0 1.22 1.37 0.2 3.51 0.98 0.13 2.6 2.18 

Palmitic acid C16:0 17.32 18.17 3.8 26.46 28.09 24.89 3.4 26.86 

Stearic acid C18:0 5.1 5.11 0 4.44 6.62 5.91 0 10.93 

Arachidic acid C20:0 0.2 10.87 0 0.87 1.73 1.17 0 18.38 

Behenic acid C22:0 0.9 1.82 0 2.05 2.03 2.36 0 1.06 

 

Sum 24.85 37.4 4.2 37.57 39.64 34.61 6.4 59.68 

Monounsaturated 

Palmitoleic acid C16:1 1.8 1.72 1.5 7.51 0.25 1.64 1.02 1.17 

Oleic acid 

C18:1 

 (ω-9)  9.47 27.72 2.1 27.42 28.02 28.98 0.84 14.08 

Erucic acid C22:1 0.1 0.52 0 6.93 0.19 1.31 0 2.53 

 

Sum 11.37 29.96 3.6 41.86 28.46 31.93 1.86 17.78 
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Polyunsaturated 

Linoleic acid 

C18:2 

 (ω-6)  0.7 14.84 0.5 18.27 18.45 15.07 0 12.32 

Linolenic acid 

C18:3 

 (ω-3)  1.1  0 0.12 0 0.55 1.35 0 0 

Arachidonic acid (AA) 

C20:4 

 (ω-6)  0.1 0 0 0 0.2 1.17 0 2.05 

Eicosapentanoic acid 

(EPA) 

C20:5 

 (ω-3)  1.8 0.38 0 0.93 0.42 15.8 0 5.37 

Docosahexanoic acid 

(DHA) 

C22:6 

 (ω-3)  0.8 0.4 0 0 12.26 0 0 2.96 

  Sum 4.5 15.62 0.62 19.2 31.88 33.39 0 22.7 

0 = Not Detected 

        

           


