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Abstract  

A feasible and alternative source of biological material for the 

production of biodiesel is represented through microalgae. 
Production of biodiesel from microalgae has been attracting the 

attention of researcher world-wide. A number of scientific reports 

have described the advantages of biodiesel production from 
microalgae, compared with that from other feedstock. This paper 

deals with the growth, total lipid content and fatty acid methyl 
ester (FAMEs) of a marine diatom Amphiprora paludosa W. Smith 

at different concentrations of sodium silicate, sodium nitrate, Fe-

EDTA and sodium phosphate under laboratory conditions. The 
alga showed maximum biomass production of 330 mg L-1 at 

0.075mM of sodium phosphate whereas maximum total lipid 

content of 65.64% dry weight was recorded in the medium 
amended with 0.026mM of Fe-EDTA. The total lipid obtained 

from the alga was converted into biodiesel through 

transesterification and its fatty acid composition were analysed 
through GC-MS. 

 

1. Introduction  

Biodiesel is one of the most promising renewable fuels that 

have achieved remarkable success worldwide according to 

the World Bank report (2008). Oil-rich microalgae have 

been demonstrated to be a promising alternative source of 

lipids for biodiesel production (Walker et al., 2005; Chisti, 

2007; Li et al., 2008; Song et al., 2008; Wang et al., 2008). 

There seems to be little doubt that fast-growing microalgae 

should be able to provide enough renewable biofuels as a 

replacement for fossil fuels (Li et al., 2008). Global 

warming and exhaustion of fossil fuels are major 

environmental and economical issues the world is facing 

today. Due to the limited stocks of fossil fuels and 

increasing emission of greenhouse gases into the 

atmosphere from the combustion of fossil fuels, research 

has begun to focus on alternative biomass-derived fuels 

(Scurlock et al., 1993; Kosaric and Velikonja 1995). 

Microalgae have the ability to grow rapidly, and to 

synthesize and accumulate more amounts of neutral lipid 

(20-50% of dry weight), mainly in the form of 

triacylglycerol, TAG and stored in cytosolic lipid bodies 

(Day et al., 1999; Hu et al., 2008). Some species of diatoms 

such as Chaetoceros muelleri have been considered to be 

an ideal source of neutral lipids suitable for biodiesel 

production (Mcginnis et al., 1997; Illman et al., 2000). 

Biodiesel has better properties than that of petroleum diesel 

because biodiesel is renewable, biodegradable, non-toxic 

and essentially free of sulphur and aromatic compounds. 

Recent investigation has indicated that the use of biodiesel 

can reduce 90% pollution (Sharp 1996). 

Microalgal lipids are mostly neutral lipids due to their 

lower degree of unsaturation and their accumulation in the 

microalgal cell at the early or late end of the growth phase. 

This makes microalgal lipids a potential diesel fuel 

substitute (Casadevall et al., 1985; Chisti, 2007). These 

lipids are essential nutrients for cell growth. Their main 

role is to make up a reserve of metabolic energy (Dempster 

and Sommerfeld, 1998), and to provide among other fatty 

acids, long-chain polyunsaturated fatty acids (PUFAs), 

which function as a key part of the biomembrane structures 

(Salhi, 1994). Microalgae are an optimal source of PUFAs, 

and new industrial scale culture systems are being 

developed in order to produce large amounts of biomass. 

The technical advances suggest that the industrial 

production of biodiesel from microalgal oils may be 

feasible in the near future. However, an economic 

utilization system needs to be standardizing for the optimal 

production of the resources. In this way, manipulation of 

culture conditions (physico-chemical factors) represents a 

solution to increase the lipid yield (Roessler, 1990). As 
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lipid production by microalgae is not regulated by 

environmental factors in the same manner for all species 

(Chelf, 1990), a control is required.  In this present study a 

marine diatom Amphiprora paludosa W. Smith isolated 

from Kovelong coast near Chennai, was chosen and 

experiment were conducted enhance lipid content at 

different concentrations of silicate, nitrogen, phosphorus 

and iron in the laboratory conditions. 

2. Material and Methods 

2.1. Marine diatom 

The algal samples were collected along the Kovelong coast, 

near Chennai Tamil Nadu, India, using phytoplankton net 

of 25µm in 2009. The samples contained diatoms were 

transferred to f/2 (Guillard and Ryther 1962) medium and 

kept at 241ºC in a thermostatically controlled room, 

illuminated with cool white florescence lamps at an 

intensity of 30μEm -2s -1, and 12:12 h of light/ dark regime. 

After 5 days the samples were serially diluted up to 10-10 

and 0.1mL spread on 2% f/2 agar medium. The 

cyanobacterial contaminants were eliminated by treating 

them with 3000 ppm of the antibiotic, Streptomycin 

sulphate for 30 min under  30μEm -2s -1 light intensity and 

transferred to antibiotic free basal medium (Rengasamy et 

al. 1987). Among the diatoms Amphiprora paludosa W. 

Smith was isolated and identified based on its 

morphological characters (Venkataraman, 1939). 

2.2. Experiments 

Amphiprora paludosa was grown at different 

concentrations of sodium silicate: 0.035 mM, 0.070 mM, 

0.105 mM (control), 0.140 mM, 0.175 mM, 0.210 mM and 

0.245 mM; sodium nitrate: 0.760 mM, 0.820 mM, 0.882 

mM (control), 0.940 mM, 1.00 mM, 1.10 mM and 1.12 

mM; Fe-EDTA: 0.009 mM, 0.0140 mM (control),  0.017 

mM, 0.020 mM, 0.023 mM and 0.026 mM and sodium 

phosphate: 0.025mM, 0.0362 mM (control) 0.050 mM, 

0.058 mM, 0.067 mM and 0.075 mM. 

Thirty mL of optimally grown culture was inoculated in 

270 mL-1 f/2 (Guillard and Ryther, 1962) medium and kept 

under laboratory conditions. Experiments were conducted 

for a period of 21 days. At every three days of interval dry 

biomass and total lipid (Folch et al. 1957) were estimated 

and recorded.  

2.3. Dry biomass 

The culture was pelleted by centrifugation at 5000 rpm for 

10 minutes. The pellet was washed three times with 

ammonium formate 0.65M (Moheimani, 2005) in order to 

remove the salt content. Then it was transferred to pre dried 

GF/C glass fiber filter paper and keep at 60°C for overnight 

in a hot air oven and cooled in a desiccator before weighing 

dry biomass.   

 

 

2.4. Extraction and purification of total lipids  

Lipids were extracted by the modified procedure as 

described by Bligh and Dyer (1959). The cells were 

homogenized with chloroform: methanol: water (2:1:0.8, 

v/v/v) for 2 min. An equal volume of chloroform and 

distilled water was then added, to bring the final ratio of the 

mixture to 2:2:1.6 and the mixture were then homogenized 

for 1 min. The chloroform layer containing lipid fraction 

was separated, and the alcoholic layer, contained the 

residues, were re-extracted twice with methanol and 

chloroform (1:2, v/v). 

The chloroform layers were pooled and subjected to a 

“Folch wash” to remove all non-lipid contaminants 

(Christie, 1992). The mixture was washed with one-fourth 

of the volume of 0.88% (wt/v) potassium chloride, 

followed by methanol/saline solution (1:1, v/v). The 

purified chloroform extract was then evaporated under 

room temperature and total lipid content was. It was then 

converted to Fatty Acid Methyl Esters (FAMEs). 

2.5. Fatty Acid Methyl Esters (FAMEs) 

FAMEs were extracted by following the method of White 

et al. (1998).  Total lipid extracts were vortex-mixed for 30 

sec in 2 mL of a mixture of methanolic KOH solution (0.2 

mol L-1)  and toluene-methanol, 1:1 (v/v), incubated at 

37ºC in a water bath for 15 min, cooled, and neutralized 

with acetic acid (1 mol L-1). Two millilitres of 

hexane:chloroform, 4:1 (v/v) and 2 mL of Milli-Q water 

were added to the samples, centrifuged for 5 min at 2000 

rpm to separate the phases. The upper phase was washed 

twice with 2 mL of hexane:chloroform, 4:1 (v/v). The 

supernatant obtained was mixed with the supernatant of the 

first wash, and then evaporated under room temperature 

and analysed by GC-MS. 

3. Results and Discussion 

3.1. Effect of sodium silicate 

3.2. Biomass and lipid production 

The alga grown at different concentrations of sodium 

silicate showed a typical growth curve i.e., Day 0 to Day 3 

lag phase, Day 6 to Day 15 exponential phase and after Day 

15th stationary phase. Among the seven different 

concentrations of sodium silicate chosen the alga showed 
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maximum biomass of 266 mg L-1 at 0.245 mM, which was 

175% more than control (Fig.1.). In various concentrations 

of sodium silicate, the lipid content extracted from the alga 

was calculated in term of percentage based on dry weight. 

The alga had high lipid accumulation of 43.12%, 42.21% 

and 41.60% at 0.07, 0.035 and 0.140 mM, respectively. The 

increments were 10-13% more than control (Fig.2). Lower 

concentrations of sodium silicate induced high lipid content 

(Lynn et al. 2000). Stationary phase may be induced by 

limiting one or more variables that control growth, such as 

nitrogen, phosphorus or silicon limitation (Mansour et al. 

2005).  

 

 

 

 

Fig.1. Effect of sodium silicate on biomass production of A. paludosa 

 

 

Fig.2. Effect of sodium silicate on total lipid content of A. paludosa 

 

 

3.3. Effect of sodium nitrate 

3.4. Biomass and lipid production 

Among the different concentrations of sodium nitrate tested 

0.94 and 1.0 mM supported maximum biomass production 

of each 180 mg L-1, respectively. They were 12.5% more 

than control (Fig.3.). Nitrogen starvation has lead to lipid 
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accumulation in a number of microalgal species Neochloris 

oleoabundans was able to accumulate 35-54% lipids under 

nitrogen-deficient conditions, of its cell dry weight and its 

TAGs comprised 80% of total lipids (Kawata et al., 1998; 

Tornabene et al., 1983). In A. paludosa maximum high 

lipid accumulations of 36.67% and 34.56% were recorded 

at 0.940 mM and 0.76 mM, respectively. Their increments 

were 6.67 and 4.56%, when compared to control (Fig.4.)

. 

 

Fig.3. Effect of sodium nitrate on biomass production of A. paludosa 

 

 

Fig.4. Effect of sodium nitrate on total lipid content of A. paludosa 

 

 

 3.5. Effect of Fe-EDTA  

3.6. Biomass and lipid production 

The alga showed high biomass in the medium amended 

with 0.026, 0.023 and 0.020 mM concentrations of Fe-

EDTA. In the above conditions it showed 196.5 190.3 and 

188.5 mg L-1 of biomass, respectively. Their increments 

were 46.5, 40.3 38.5% more than control (Fig.5.). The alga 

was able to accumulate high lipid content of 65.64%, 

63.16% and 57.78% at 0.026, 0.023 and 0.009 mM, 

respectively. Their increments were 23.76, 21.29 and 

15.91% more than control (Fig.6). Liu et al. (2008) 

reported similar values in Chlorella vulgaris were 
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accumulated lipid content was 56.6% in iron deficiency 

condition.  

 

 

 

Fig.5. Effect of Fe-EDTA on biomass production of A. paludosa 

 

 

Fig.6. Effect of Fe-EDTA on total lipid content of A. paludosa 

 

3.7. Effect of sodium phosphate  

3.8. Biomass and lipid production 

Amphiprora paludosa grown at different concentrations of 

sodium phosphate revealed that the following observations. 

High biomass production was observed at 0.075, 0.067 and 

0.058 mM of 0.075, 0.067 and 0.058 mM on 21st day 

culture, respectively. Their increments were 5.0, 4.5 and 

4.5 folds to that of control (Fig.7). The alga had high lipid 

38.19% at 0.025mM which was 8.07% more than control 

(Fig.8). The deficiencies of a few nutrients, including 

phosphate (Khozin-Goldberg and Cohen 2006), have been 

reported as being able to cause the cessation of cell growth, 

and channel metabolic flux generated in photo biosynthesis 

to lipid/fatty acid biosynthesis. 
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Fig.7. Effect of sodium phosphate on biomass production of A. paludosa 

 

 

Fig.8. Effect of sodium phosphate on total lipid content of A. paludosa 

 

 

3.9. Fatty acid composition 

Amphiprora paludosa showed 17 different fatty acids: 6-

Octadecenic acid 18:1 (n-7), 0.14%; 7-Octadecenoic acid 

18:1, 0.32%; 7,10 Hexadecadienoic acid 16:2, 1.0%; 

Behenic acid 22:0, 0.37%; Lauric acid 12:0, 0.17%; 

Lignoceric acid 24:0, 0.54%; Linoleic acid 18:2 n-6cis, 

0.47%; Margaric acid 17:0, 1.00%; Myristic acid 14:0, 

6.08%; Nonanedioic acid 9:0, 0.11%; Oleic acid 18:1n-

9cis, 2.19%; Oxiraneoctanoic acid 8:0, 0.56%; Palmitic 

acid 16:0, 52.62%; Palmitoleic  acid 16:1, 26.23%; 

Pentadecanoic acid 15:0, 5.37%; Stearic acid 18:0, 2.76%; 

Tridecanoic acid 13:0, 0.1%. Among them 69.8% was 

saturated fatty acids, 28.88% of monounsaturated fatty 

acids and 1.47% of polyunsaturated. The fatty acids of 

diatoms have been studied more extensively than those of 

other microalgal groups (Reitan et al., 1994; Zhukova and 

Aizdaicher, 1995; Grima et al., 1996; Zhou et al., 1996). It 

was reported that almost all diatoms contained high 

proportions of 14:0, 16:0; 16:1(n-7) and 20:5 (n-3) fatty 

acids, and C18 and C22 PUFAs were found as minor 

constituents (Orcutt and Patterson, 1975; Volkman et al., 

1989). Similar results were observed in the present study. 

 4. Conclusions 
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In this study, biomass and total lipid content of Amphiprora 

paludosa were evaluated at various concentrations of 

sodium silicate, sodium nitrate, Fe-EDTA and sodium 

phosphate in f/2 medium in the laboratory conditions. The 

biomass of the alga was enhanced when the medium 

amended with 0.075 mM of sodium phosphate. Whereas 

Fe-EDTA at 0.026mM supported maximum total lipid 

accumulation of the alga. It was suggested that among the 

four different nutrients chosen sodium phosphate and Fe-

EDTA could play a vital role in biomass and lipid 

production. 
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