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Abstract 

Microalgae communities play a significant role in natural environment and also in many commercial industries. Hence, a 
number of techniques are being used to enhance the algal biomass and by-products. In this study, Haematococcus pluvialis 
standard growth medium was manipulated by different levels of iron and zinc nanoparticles (NPs) and compared with the 
corresponding metals bulks forms to assess the density and some biochemical components. H. pluvialis was grown with 4.98 
mg/L FeSO4 and 8.82 mg/L ZnSO4 (T1), 2.49 mg/L Fe NPs and 4.41 mg/L Zn NPs (T2) and 4.98 mg/L Fe NPs and 8.82 mg/L 
Zn NPs (T3) for 14 days. Also, the standard growth medium with 2.49 mg/L FeSO4 and 4.41 mg/L ZnSO4mg/l was included as 
a control group. The highest algal density was measured in T2 (4.52×10

5
 cell/mL) (p<0.05). Also, the highest content of total 

chlorophyll (7.59 µg/mL) and astaxanthin (7.29 mg/L) contents were obtained in T2 (p<0.05). The treated growth medium with 
two-fold concentration of Fe and Zn NPs showed the highest metal accumulation in the algal cells (0.65 mg/l Zn and 5.25 mg/l 
Fe). Results showed that Fe and Zn in nano forms at the standard level (T2) were significantly improved the growth 
performance and biosynthesis of chlorophyll and astaxanthin contents in H. pluvialis.  
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Introduction 

Recently, nanoparticles (NPs) are the most important products in nanotechnology and have received core of 

attention in many fields including medicine, pharmaceutics, cosmetics, food, therapeutics, biosensors and 

environmental remediation (Dunphy Guzman et al., 2006; Dastjerdi and Montazer, 2010; Comotto et al., 2014). 

Also, size and surface area of NPs play a crucial role in biological systems due to easily intrude in organism cells 

(Verma and Stellacci, 2010). Meanwhile, many studies have been reported that the iron nanoparticles (Fe NPs) 

mainly employed for reducing environmental pollution in soils and water (Lin et al., 2008; Gui et al., 2012).  

Fe is the third limiting nutrient for plants and all aerobic organisms. Moreover, it is necessary in numerous 

enzymatic reactions and photosynthetic electron transport chains (Raven et al., 1999; Estevez et al., 2001; La 

Fontaine et al., 2002). However, the bioavailability of Fe salts in environment are limited due to natural oxidation 

and transformation to ferric form which has extremely low solubility in water (Schmidt, 1993; Sunda et al., 2005). 

In contrast, Fe NPs has better stability, bioavailability, faster dissolved rates and higher permeability into the 

microorganism cytosol (Van Hoecke et al., 2008). Fe NPs are used as an effective agent for reducing chlorinated 

organic contaminants in soil or groundwater in line with green and eco-friendly concepts (Becerra et al., 2007; 

Hoag et al., 2009). Growth rate of some microalgae species including Desmodesmus subspicatus, Dunaliella 

salina, Parachlorella kessleri and Raphidocelis subcapitata was enhanced by fortifying the standard growth 

media with 5.1 mg/L Fe NPs (Pádrová et al., 2015). In addition, Pribyl et al. (2012) demonstrated that using Fe 

NPs in P. kessleri culture in accordance with the standard growth medium requirement, lead to significant 

increase in the lipid accumulation from 27.1% to 30.9%.  

Zinc (Zn) is Known as an essential trace element in all organisms from bacteria to human population. Zn also 

plays structural, catalytic and co-catalytic roles in over than 300 enzyme, including nucleic acid metabolism and 

protein synthesis (Marschner, 1986; Andreini et al., 2006). Although, many studies have focused on the toxic 

effects of Zn NPs on different microalgae species (Aravantinou et al., 2015; Neale et al., 2015; Tang et al., 2015). 

However, a few studies showed the potential application of Zn NPs in microalgae culture (Thema et al., 2015; 

Rajiv et al., 2013).  

Haematococcus pluvialis (Chlorophyceae, Volvocales) is a unicellular green flagellated microalga which mainly 

found in small, transient and freshwater bodies. Among many microalgae species (e.g. Chlorella sp., 

Chlorococcum sp. and Scenedesmus sp.) that are known as a potential source of natural pigments, H. pluvialis is 

proposed as the best natural source of astaxanthin pigment (up to 4% of dry basis) (Zhekisheva et al., 2005). 

This microalgae becomes spherical, immobile and forms a lot of large red aplanospores in the absent of 

chlorophyll synthesis in harsh conditions (Boussiba et al., 1999, Wayama et al., 2013; Boussiba, 2000). At the 

same time, the vegetative cells begin to synthesis the astaxantin cysts (Kobayashi et al., 1997, Li et al., 2010). In 
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this regard, many studies have been performed on manipulating of H. pluvialis standard growth medium nutrients 

to obtain higher algal astaxanthin production efficiency. For instance, the microalgae cells can produce a large 

amount of astaxanthin pigment upon the stress conditions (Sarada et al., 2002), light intensity regimes (Jeon et 

al., 2006), nitrogen and phosphorus starvation (Boussiba and Vonshak, 1991; Boussiba et al., 1999). 

This study aimed to estimate density, metals accumulations, chlorophyll a and astaxanthin contents of H. pluvialis 

in the manipulated standard growth mediaum by different levels of Fe and Zn nanoparticle and compared with the 

corresponding metals bulks for 14 days. 

 

Materials and methods 

H. pluvialis initial pure stock was obtain from SAG Culture Collection (SAG 19-a, Universität Göttingen, 

Göttingen, Germany) and cultivated on autotrophic Bold's Basal medium (BBM) (Bischoff and Bold 1963) which 

was modified to contain two different levels and sources of Fe and Zn for 14 days. FeSO4 and ZnSO4 (Merck) 

was considered as Fe and Zn salt sources. Also, NPs of the metal oxides were purchased from Sigma-Aldrich 

with the mean particle size specified by the manufacturer being 25-50 nm and 50–70 nm for Fe3O4 and ZnO NPs, 

respectively. Three concentrations of the metals with two different resources were 4.98 mg/L FeSO4 and 8.82 

mg/L ZnSO4 (T1), 2.49 mg/L Fe NPs and 4.41 mg/L Zn NPs (T2) and 4.98 mg/L Fe NPs and 8.82 mg/L Zn NPs 

(T3). Also, control group (Tc) was contained 2.49 mg/L FeSO4 and 4.41 mg/L ZnSO4 according to nutrient 

requirement of BBM growth medium. Cultures were grown with 10 mL inoculum of the algae (0.5× 10
7
 cells/mL) 

on a platform shaker in sterilized baffled flasks at 251 °C with 2.42 kilo lux of cool-white fluorescent light and 12-

hour intervals photoperiods. Also, continuous filtered aeration was included during the trial.  

 

Algal density 

Total cell density was determined by hemocytometer according to Arnon (1949) method.  

Chlorophyll measurement 

Chlorophyll a (Chl) content of the grown algae was measured by centrifuging at 2500 g for 5 min and extracting 

of the algal cells  with 80% acetone overnight. Then, the absorbance of the supernatants were measured at 645 

and 663 nm using a Varian Cary 50 UV–vis spectrophotometer (Varian Co., US) and calculated using the 

following equation (Zhang et al., 2008): 

                                               

 

Astaxanthin content 

The extractable astaxanthin content was measured as free and total astaxanthin levels according to Okagbue 

and Lewis, (1983) methods with some modifications. The algal cells were mixed with 90% (v/v) acetone for 1 h 

and centrifuged at 3000 g for 10 min at 4°C. The supernatants were collected and measured at 444 nm to 

calculate free astaxanthin content. The precipitates were mixed with 90% (v/v) acetone for 1 h, then destroied by 

ultrasonic bath system (Wise clean, Germany). Then, the samples were again centrifuged for 10 min at 3000 g 

and the supernatants were subjected to read at 444 nm to determine total amount of astaxanthin content 

(Kobayashi et al., 1997). All steps were carried out under the dim light. Extractability of astaxanthin content was 

measured using the below equation (Kobayashi et al., 1997):  

Astaxanthin Extractability (%) = Free astaxanthin/Total astaxanthin × 100 

 

Metals concentration in the algal cells  

The bioaccumulation of Fe and Zn were calculated by an Atomic absorption spectrophotometer (Varian SpectrAA 

200, Victoria, Australia) using Hollow cathode lamp after microwave sample digestion at 510 and 214 nm, 

respectively. In summary, the algal dry matter was acquired by filtration of the treatments through a Whatman 

GF/C paper prior to dry at 60°C for 42 h in a FD-115 oven (Binder, Tutlingen, Germany). Then, 0.5 g (dry basis) 

of the algal cells were microwave-digested in PTFE (polytetrafluoroethylene) vessel with 4 mL of nitric acid (65%) 

and 1 mL of distilled water at 80°C for 10 min. Afterward, The aqueous solution was poured and kept at 4C° in 

stoppered polyethylene bottles prior to further analysis. 

 

Statistical analysis 

Values represent the mean of assays performed in triplicate ± SD. Statistical analyses were conducted in SPSS 

20.0 for Windows (SPSS, Inc., Chicago, USA). The one-way ANOVA was used to verify significance of 

differences between means, using Duncan's multiple range test at the significance level of 5%. 
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Results and discussion 

Biomass production 

Algal cells density of H. pluvialis in the supplemented growth media by different levels of Fe and Zn NPs and the 

corresponding metals bulks is shown in Fig. 1. The algal density was significantly (p<0.05) decreased by 

increasing in the concentration of both bulks and NPs metals, however the highest value was obtained in T2 

which represents NPs metals at standard concentration according to the nutrient requirement of BBM growth 

medium (p<0.05).  

The potential application of metal-based NPs has been recently attracted an enormous attention due to their 

unique properties (Wang et al., 2014). Our results revealed that the highest concentration of Fe and Zn in both 

forms of NPs and bulks inhibited the algae density compared to the control group. It was demonstrated that the 

NPs at the highest concentrations can adhere to algal cell surfaces, restrict the light accessibility and finally 

reduce the photosynthesis process (Hund -Rinke and Markus, 2006; Kwok et al., 2010). Also, Sibi et al. (2017) 

showed that specific growth rate and biomass density of Chlorella vulgaris were decreased by increasing in Cu-

NPs, Pb-NPs, Zn NPs and Mg-NPs concentrations in the growth media. Furthermore, a number of studies 

reported that Chlorella sp. growth performances were decreased by increasing in magnetic Fe oxide NPs 

concentration due to agglomeration of the metal-based NPs with algae cells (Long et al., 2012; Toh et al., 2014). 

In addition, some metal-based NPs like Fe NPs have the potential toxicity by generating reactive form of oxygen 

species (ROS) which is induced oxidative stress. The production of ROS is believed to induced oxidative damage 

to the microorganism cell walls and DNA (Imlay and Linn 1988; Keenan et al., 2009; Li et al., 2009; Wu et al., 

2014). However, some recent studies showed that the positive effects of metal-based NPs on different plants and 

algae species at appropriate concentrations. For instance, Hong et al. (2005) showed that growth performances 

of spinach (Spinacia oleracea) was promoted with TiO2 NPs at 0.25% by stimulating the photosynthesis. 

Moreover, Kadar et al. (2012) revealed that growth rate of three microalgae (Pavlova lutheri, Isochrysis galbana 

and Tetraselmis suecica) increased by adding Zn NPs at 1.17×10
−5

 M concentration. Also, Meilin et al. (2017) 

indicated that adding of Fe2O3 NPs at 20 mg/L in the growth medium of Scenedesmus obliquus enhanced the 

cell density as well as chlorophyll content. This result also showed that metal-based NPs can enhance the cell 

density of H. pluvialis at the standard concentrations according to the nutrient requirement of BBM growth 

medium.  

 

Fig. 1 Different levels of Fe and Zn in the forms of NPs and bulks on H. pluvialis density. Data with different 

superscript letters are significantly different (n=3, p<0.05). 

 

Chlorophyll a content 

The chlorophyll a content of the grown algae using different levels of iron and zinc metals in different forms of 

NPs and bulks is shown in Fig 2. The highest chlorophyll a content was observed in T2 which was treated by the 

metals NPs at 2.49 mg/L Fe NPs and 4.41 mg/L Zn NPs concentration (p<0.05). It has revealed that using of 

metal-based NPs instead of metals salts in algae culture can stimulate and enhance the growth rate, biomass, 

cellular pigment, and other bioactive compounds of the microorganism (Sibi et al., 2017). However, double fold 

concentrations of Fe and Zn NPs were probably toxic to H. pluvialis and inhibited the chlorophyll a synthesis. 

The main limiting factor in using of metal-based NPs in microorganism culture is ROS generation and 

aggregation process (Yan et al., 2011). The same results were observed in supplemented growth medium of 

Chlorella vulgaris with 1 g/L MgSo
4
 NPs (Sarma et al., 2014). Morgalev et al. (2017) showed that adding of 0.1 

mg/L Zn NPs in Chlorella vulgaris growth medium resulted in the chlorophyll a and b enhancement. Furthermore, 
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it has been proven that lower concentrations of Cu (20-40 mg/L) and Se (0.07-0.2 mg/L) nanocarboxylates in 

Chlorella vulgaris growth media can increase the chlorophyll contents (Mykhaylenko and Zolotareva, 2017). 

 

Fig. 2 Different levels of Fe and Zn in the forms of NPs and bulks on chlorophyll a content of H. pluvialis. Data with 

different superscript letters are significantly different (n=3, p<0.05). 

 

Astaxanthin synthesis 

As shown in Fig. 5, the highest content of astaxanthin content (7.29 mg/L) was obtained in T2  compared to other 

treatments (p<0.05).  

Algal pigments such as Chlorophylls, carotenoids and phycobilins absorb light in the process of photosynthesis. 

Astaxanthin pigment is a secondary metabolite product and synthesized by H. pluvialis against stress conditions 

such as high light, salinity, and/or nutrient depletion (Gao et al., 2012). Also, metal-based NPs can induce 

oxidative stress, improve algal growth and promote the production of secondary metabolites compounds (Kang et 

al., 2014). Many investigations showed that free ferrous (Fe
2+

) represents a hazard of fenton reaction process 

and generates ROS which are augmented synthesis of astaxanthin in H. pluvialis (Yu et al., 2015; Harker et al., 

1996; Shah et al., 2016). Ma and Chen (2001) observed that using of 0.1 M H2O2 (as a ROS agent) enhanced 

astaxanthin formation in Chlorococcum sp. 

In the current study, the production of astaxanthin pigment was significantly (p<0.05) decreased in the treated 

growth medium with double fold concentration of the both bulk and nano metals compared to control group. The 

toxicity of metal-based NPs to microalgae at higher concentration is mainly due to ROS (Lapresta-Fernández et 

al., 2012). It has been reported that ROS can damage microorganisms by creating many holes into the cellular 

membrane (Sondi and Salopek-Sondi, 2004; Brayner et al., 2006).   

 

Fig. 3 Different levels of Fe and Zn in the forms of NPs and bulks on astaxanthin accumulation of H. pluvialis. Data 

with different superscript letters are significantly different (n=3, p<0.05). 

 

Bioaccumulation of the metals 

The accumulation of Fe and Zn in H. pluvialis cells are illustrated in Fig. 3. The treated growth medium with the 

metals NPs showed the lowest Zn and Fe accumulation compared to other treatments (p<0.05).  

Bioaccumulation of metals in microalgae may be posed a major threat for the organism health and consumer 

safety. Accumulated of heavy metals in some microalgae (e.g. Chlorella, Chlamydomonas, Scenedesmus and 

Pseudokirchneriella) caused lower growth rate and even death due to dwindled competition between the metal 
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ions and H
+
 at the cell surface (Franklin et al., 2000; De Schamphelaere et al., 2003). Toxicity of metal-based 

NPs in microalgae is highly depending on initial metals concentrations, size, shape, chemical composition, 

charge, and surface structures (Oberdörster 2005).  

Algal cell structures are mainly consisting of cellulose and semipermeable membrane which are allowing small 

molecules to pass and enter into the cell (Navarro et al., 2008). As a result, only NPs and molecules with the 

smaller size than the largest cellular pores can pass through the algae cell membrane and reach the plasma. In 

this study, the highest metals accumulation was measured in manipulating growth medium with two-fold 

concentration of Fe and Zn NPs (T4). Some studies showed that higher content of metals in an aquatic 

ecosystem may be increased in absorption of the metals by microorganisms (Sun et al., 2007; Zhang et al., 2007; 

Wick et al., 2007). 

 

 

Fig. 4 Different levels of Fe and Zn in the forms of NPs and bulks on the metal accumulation of H. pluvialis. Data with 

different superscript letters are significantly different (n=3, p<0.05). 

 

In this study, results showed the positive influence of Fe and Zn nanoparticles in accordance with their standard 

concentration of BBM medium. Biomass, astaxanthin and chlorophyll a contents of H. pluvialis were improved in 

treated growth medium with 2.49 mg/L Fe NPs and 4.41 mg/L Zn NPs. However, higher concentrations of the 

metals NPs probably have toxic effects, but further trials are needed. 
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