

TREATMENT OF ARTERIOVENOUS FISTULA STENOSIS ACCORDING TO **ULTRASOUND MORPHOLOGY**

Ru Yu TAN¹, Hiu Yu LEE¹, Davina LIE¹, Suh Chien PANG¹, Alvin TNG¹, Chee Wooi TAN¹, Kay Yuan CHONG², Kiang Hiong TAY³, Tze Tec CHONG⁴, Edward CHOKE⁵, Jackie HO⁶, Chieh Suai TAN¹

¹ Department of Renal Medicine, Singapore General Hospital; ² Division of Medicine, Singapore General Hospital; ³, Department of Vascular and Interventional Radiology; ⁴ Department of Vascular Surgery, Singapore General Hospital; ⁵ Department of General Surgery, Sengkang General Hospital; ⁶ Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre

Background

Drug-coated balloons (DCBs) has emerged as a new endovascular treatment for arteriovenous fistula (AVF) stenosis for their ability to combat neointimal hyperplasia (NIH) and improve target lesion primary patency rates (TLPP). However, there have been inconsistencies in benefits of DCB in clinical trials to date. We postulate that stenosis with neointimal hyperplasia seen on ultrasound scan will respond better to anti-proliferative effect of DCB compared to constrictive stenosis treated with DCB versus plain old balloon angioplasty (POBA).

Methods

Fifty-four patients who underwent percutaneous transluminal angioplasty (PTA) were followed-up prospectively with duplex ultrasonography (DUS) of the AVF at 3-, 6-, and 12-months. All stenotic lesions were recorded and the outer (A) and inner (B) diameters of the narrowest segment categorized were measured and intimal hyperplasia rate (%) was determined by [(A – B)/A x 100%). Lesions with intimal hyperplasia rate of \geq 50% were classified as NIH while those < 50% were classified as constrictive stenosis (CS). The patients were followed-up until a repeat intervention was performed based on clinical indications. TLPP of the lesions treated with DCB vs POBA were analysed.

Results

Table 1. Baseline demographic of study population

Demographics	Mean (standard deviation) or				
	Median (25 th ,75 th percentile)				
Age, years Male, n (%) Race, n (%)	64.9 (9.4) 37 (68.5)				
Chinese	40 (74.1)				
Malay	11 (20.4)				
Indian	2 (3.7)				
Others Cause of ESRD, n (%)	1 (1.9)				
Diabetes mellitus	36 (66.7)				
Chronic glomerulonephritis	11 (20.4)				
Hypertension	4 (7.4)				
Polycystic kidney disease	1 (1.9)				
Others AVF Type, n (%)	2 (3.7)				
Radiocephalic	34 (64)				
Brachiocephalic	14 (25.9)				
Brachiobasilic	5 (9.3)				
Ulnabasilic AVF vintage, months Antiplatelets use, n (%)	1 (1.9) 30 (19, 70)				
Aspirin	30 (55.6)				
Clopidogrel	6 (11.1)				
Both Anticoagulants use, n (%)	4 (7.4) 5 (9.3)				

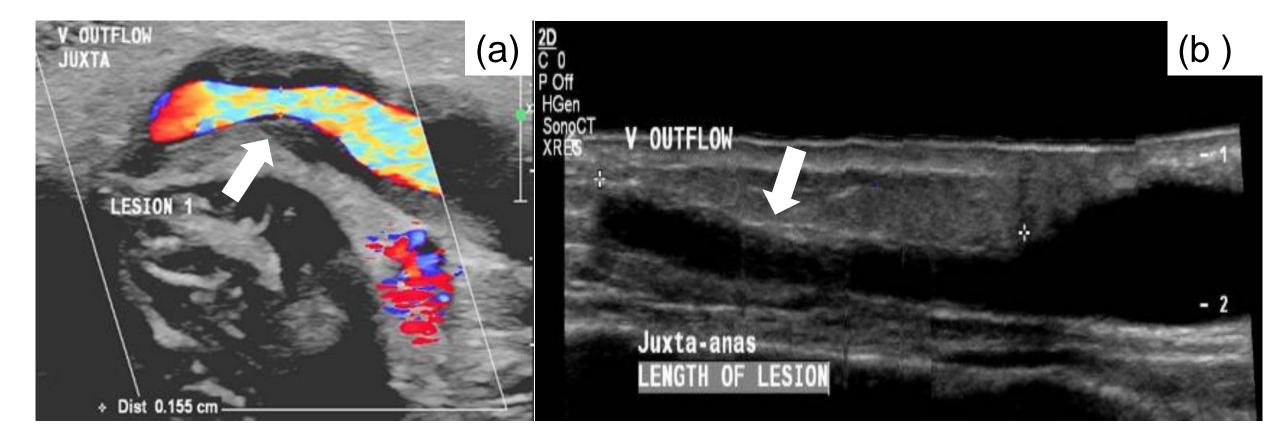


Figure 1. Ultrasound morphology of stenotic lesions: (a) neointimal hyperplasia, (b) constrictive stenosis

Table 3. Target lesions primary patency according to ultrasound morphology

		ALL			NIH			CS	
	POBA	DCB	P-	POBA	DCB	P-	POBA	DCB	P-
-			value			value			value
Ν	62	43		27	30		35	13	
Overall	203 ± 82	357 ± 236	< 0.01	232 ± 212	361 ± 242	0.04	181±	348 ± 232	< 0.01
TLPP, days							155		
3-month	51 (82)	40 (93)	0.15	25 (92.6)	27 (90)	0.73	26 (74.3)	13 (100)	0.04
TLPP, n(%)									
6-months	17 (27)	33 (77)	< 0.01	9 (33.3)	21 (70)	< 0.01	8 (22.9)	12 (92.3)	< 0.01
TLPP, n(%)									
(a) (b) Constrictive Stenosis									
		Neointimal Hyperplas			1.0-		constructive Steriosis	DCB	
1.0-		Log-rank p = 0	014	→ POBA → DCB → 0-censored → 1-censored		Ţ	Log-rank p	= 0.022	

Table 2. Characteristics of lesions

Lesion characteristics, n (%)	All	NIH (n = 57)	CS (n = 48)
Inflow artery	1 (1)	1 (1.8)	0
Arteriovenous anastomosis	13 (12.4)	8 (14)	5 (10.4)
Juxta-anastomosis	45 (42.9)	30 (52.6)	15 (31.3)
Cannulation zone	16 (15.2)	4 (7)	12 (25)
Distal outflow	18 (17.1)	9 (15.8)	9 (18.8)
Cephalic arch	8 (7.6)	2 (3.5)	6 (12.5)
Basilic vein swing zone	4 (3.8)	3 (5.3)	1 (2.1)

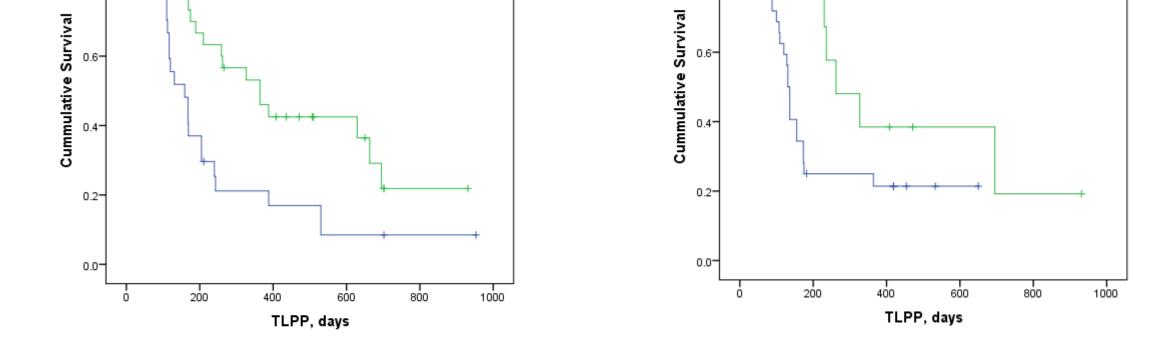


Figure 2. Kaplan-Meier analysis of DCB vs POBA for lesions with: (a) neointimal hyperplasia (b) constrictive stenosis

Conclusions

The study supports the preferential use of DCB over POBA for treating stenosis of NIH and constrictive on ultrasound morphology in dysfunctional AVF for superior target lesion primary patency at 6-month.

References:

- 1. Yamamoto Y, Nakamura J, Nakayama Y, et al. Relationships between the outcomes of stent placement and the properties of arteriovenous graft outflow vein stenotic lesions. J Vasc Access. 2012;13:426-431.
- 2. Roy-Chaudhury P, Sukhatme V, Cheung A. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephrol. 2006;17:1112-1127
- 3. Suemitsu K, Shiraki T, lida O et al. Impact of lesion morphology on durability after angioplasty of failed arteriovenous fistulas in hemodialysis patients. J Endovasc Ther. 2018 Oct;25(5):649-654.

