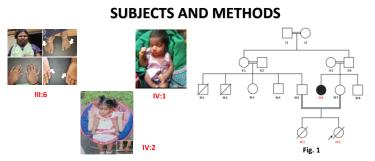


A Rare Combination of Bardet-Biedl And Meckel Syndrome: A Case Report

Divya Shree Satheeshkumar¹, Dr. Nisha Kalaiarasan², Aravind Ramanathan^{1,3} ¹Renal Research Laboratory, Pearl Research Park, School of Biosciences and Technology,

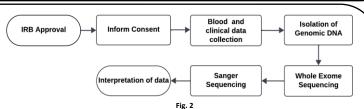
Vellore Institute of Technology, Vellore- 632 014, TN-India


²Sri Narayani Hospital and Research Centre, Thirumalaikodi, Sripuram, Vellore- 632 055, TN-India ³ Corresponding Author's email: <u>aravindselvinkumar.r@vit.ac.in</u>

Abstract No: WCN25-AB-1707

INTRODUCTION

- Bardet–Biedl syndrome(BBS) and Meckel Syndrome (MKS) are rare ciliopathies genetic disorder
- In BBS, 90% of renal abnormalities can be the cause of morbidity and mortality¹; renal cystic dysplasia is a salient feature in MKS²
- Approx.18 genes (BBS1-BBS18) linked to BBS; BBS1 & 10 are commonly mutated and BBS2, 3 & 12 genes reported unusually³
- Approx. 14 genes are linked to MKS, most reported genes are CEP290, MKS1, CC2D2A, TXNDC15, B9D2⁴
- X-linked retinitis pigmentosa GTPase regulator-interacting protein 1 (*RPGRIP1*)⁵ and Exocyst Complex Component 3-Like Protein 2 (*EXOC3L2*)⁶ are ciliogenesis genes, mutation were not reported in BBS and MKS


- An 18-month-old female baby (Proband IV:2) presented with lower respiratory infection to the hospital. 2nd girl baby born to 2nd degree consanguineous marriage
- Proband had dysmorphic features like joint contractures, low set ears, high arched palate, widespread nipples, hyperkalemia, left Congenital talipes equinovarus (CTEV), polydactyly, hypertelorism, situs solitus, microphthalmia, and retrognathia. Antenatal scans showed bilateral ventricular, also had dextrocardia, Atrial septal defect and ventricular septal defect, bilateral ventricular dilatation, mild hydrocephalus, renal pelvicalyceal dilation, renal parenchymal, and mild hydronephrosis. she died at 20 months of age
- Girl baby(IV:1) also had congenital defects like fetal ascites, bilateral hydroureteronephrosis, bilateral hydronephrosis, polydactyly, dilated large bowel, fetal placentomegaly, and polyhydramnios. She died at 3 months of age due to nonimmune hydrops dysplastic kidney
- Affected individual(III:6) she had global development delays/intellectual disability and other complications like hypertelorism, retrognathia, obesity, polydactyly, joint constructures. Currently, she is 23 years old without any medical illness or treatment

FUTURE PROSPECTS

- We have given Sanger sequencing of the RPGRIP1 and BBS2 gene •
- We plan to identify the *RPGRIP1* and *EXOC3L2* genes and its role/effects in ciliopathy

REFERENCE

- 1. Cai M et al., Med. 101(32), e30003(2022).
- 2. Hartill V et al., Front. Pediatr. 5, 244(2017)
- 3. Azizi H et al., Hum. Genome Var. 11(1), 12(2024).
- 4. Ridnõi K *et al., Mol. Genet. Genomic. Med.* 7(5), e614(2019).
- 5. Gerber S *et al., Eur J Hum Genet. 9*(8), 561-571(2001).
- 6. Shaheen R et al., Genome Biol. 17, 1-11(2016).

- SNHAR ethical clearance IRB No: 42/06/05/23
- We collected the 2ml of blood samples from the family members
- WES was done for proband and affected individual
- For further confirmation, we sent samples for sanger sequencing of candidate genes such as *RPGRIP1* and *EXOC3L2*

RESULTS

Whole Exome Sequencing

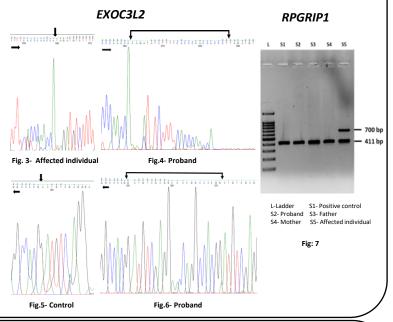

Syndromic Disorder BBS	Proband/ Affected individual Gene	Mutation (AA changes)						
		BBS2	BBS4	BBS9	BBS10	BBS12	мккз	
	Proband	R413X; I289V; S70N	I182T	A333T; A455T; A364T	P539L	R386Q; D467N	G532V; R517C	
	Affected Individual	R413X; I289V; S70N	I182T	A333T; A455T; A364T		R386Q; D467N		
MKS	Gene	RPGRIP1L	B9D1	B9D2	CEP290	TMEM67	TMEM216	TMEM
	Proband	R744Q	H187Y; P167L	111M	R1746Q	1604V; 1523V	R147T, R86T	S26R, I
	Affected individual	R744Q		111M		1604V; 1523V		

Table:1- The list of Mutated genes in BBS and MKS identified in proband and affected individual.

Mutation Analysis for proband

- 1. RPGRIP1(exon 5: c.A574G:p.K192E)
- 2. EXOC3L2 (exon12:c.G2372A:p.R791Q)

Sanger Sequencing

CONCLUSION

- Proband carries six genes associated with BBS and seven genes associated with MKS, it lead to the combination of both ciliopathies
- We observed the uniqueness of the mutations in ciliary genes *RPGRIP1* and *EXOC3L2* in proband

ACKNOWLEDGEMENT

This research work was funded by the Department of Biotechnology (DBT) and Department of Science and Technology (DST), India.