

ANTIPROTEINURIC EFFECT OF SPIRONOLACTONE IN KIDNEY TRANSPLANT RECIPIENTS DURING A 5-YEAR FOLLOW-UP

UNICAMP

João Antonio Pessoa de Freitasa, Marcos Vinicius de Sousab, Marilda Mazzalib

^aUndergraduate, School of Medical Sciences, State University of Campinas, UNICAMP, Campinas- SP, Brazil; ^bRenal Transplant Unit, Division of Nephrology, Department of Medicine, School of Medical Sciences, University of Campinas, UNICAMP, Campinas-SP, Brazil

Keywords: Proteinuria, Graft Function, Graft Survival, kidney Transplantation, Aldosterone.

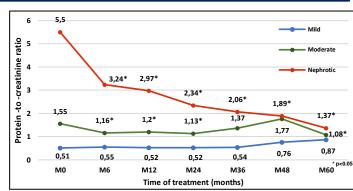
Abstract No: WCN24-AB-2699

INTRODUCTION

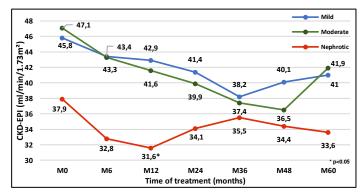
Post-transplant proteinuria is a biomarker of renal injury that negatively affects graft function and survival and has a multifactorial cause [1]. Aldosterone contributes to chronic allograft dysfunction injury, resulting in renal fibrosis and proteinuria, which reduces survival and organ function [2]. Aldosterone triggers inflammation, oxidative stress, and endothelial dysfunction, causing interstitial fibrosis, vasculopathy, glomerulosclerosis. This leads to proteinuria and reduced GFR [3, 4]. Blocking the renin-angiotensin-aldosterone system (RAAS) is considered the gold standard therapy for non-transplant patients with proteinuria [5], but there is a lack of data to determine its effect in kidney transplantation. Studies suggest that blocking RAAS through treatment with aldosterone antagonists effectively controls proteinuria and has a protective effect on the progression of renal fibrosis, leading to less graft loss [6, 7]. This study aims to evaluate the effect of spironolactone, an aldosterone antagonist and RAAS inhibitor, on proteinuria and renal function after kidney transplantation.

METHODS

Retrospective unicentric cohort study, approved by the UNICAMP ethics committee (CAAE 6.076.8289).


Inclusion criteria:

- Patients older than 18 years who received a kidney from deceased or living kidney transplant donor between January/1991 and December/2015, undergoing regular outpatient follow-up at the UNICAMP Clinical Hospital;
- Treatment with spironolactone for persistent proteinuria ≥ 0.5 g/day during a 5-year follow-up.


For analysis, the included patients were grouped according to the amount of proteinuria (protein-to-creatinine ratio) at the beginning of therapy: (1) mild: <1; (2) moderate: 1-3; and (3) nephrotic: >3. Numerical data were expressed as mean and standard deviation and analyzed with the Student's t-test. Categorical data were expressed as percentages and analyzed with Pearson's chi-square test. Values of P < 0.05 were considered significant.

RESOULTS AND DISCUSSION

167 patients fulfilled the inclusion criteria, most male (n=122, 73%), with a mean age of 40.7 ± 14.5 years. Most (n=135, 80.8%) received a kidney from a deceased donor. Most frequent etiologies of chronic kidney disease were unknown (n=38, 23%), chronic glomerulonephritis (n=37, 22%) and hypertensive nephrosclerosis (n=33, 20%). Considering the amount of proteinuria at the beginning of therapy, 47 (28%) were classified as mild, 90 (54%) moderate, and 30 (18%) nephrotic. The evolution of proteinuria during the follow-up is presented in Figure 1. The estimated graft function during follow-up is shown in Figure 2.

Figure 1: Proteinuria of kidney transplant recipients treated with spironolactone, according to the groups, during a 5-year follow-up.

Figure 2: Estimated glomerular filtration rate (CKD-EPI) of kidney transplant recipients treated with spironolactone, according to the groups, during a 5-year follow-up.

Recipients with nephrotic proteinuria treated with spironolactone presented significant and consistent reduction of proteinuria in a 5-year follow-up. Renal function remained stable in all groups. Most patients received spironolactone without ACE inhibitors or ARBs. Four patients discontinued the medication - three due to gynecomastia and one due to hyperkalemia. No hypotension was observed in any group.

CONCLUSIONS

Kidney transplant recipients with nephrotic proteinuria treated with spironolactone presented a significant and persistent reduction in proteinuria. Proteinuria remained stable in the other groups, and graft function remained stable in all groups.

REFERENCES

- Fernández-Fresnedo G, Plaza JJ, Sánchez-Plumed J, Sanz-Guajardo A, Palomar-Fontanet R, Arias M. Proteinuria: a new marker of long-term graft and patient survival in kidney transplantation. Nephrol Dial Transplant. 2004 Jun;19 Suppl 3:iii47-51. doi: 10.1039/id/pf.1015.PMID: 15192136.
- Hirsch JS, Drexler Y, Bomback AS. Aldosterone blockade in chronic kidney disease. Semin Nephrol. 2014 May;34(3):307-22. doi: 10.1016/j.semnephrol.2014.04.006. Epub 2014 Apr 18. PMID: 25016401.
- Brem AS, Morris DJ, Gong R. Aldosterone-induced fibrosis in the kidney: questions and controversies. Am J Kidney Dis. 2011 Sep;58(3):471-9. doi: 10.1053/j.ajkd.2011.03.029. Epub 2011 Jun 25. PMID: 21705125; PMCID: PMC4792515.
- Sep;58(3):47:P-9. doi:10.1033/j.ajkd.2011.03.029. Epub 2011.un 25. PMID:217/05/125; PMCID: PMC4792515.
 4. Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013
 Aug;9(8):459-69. doi:10.1038/nrneph.2013.110. Epub 2013.un 18. PMID: 23774812; PMCID: PMC3922409.
- 5. ERRAEZ S, LÓPEZ-MESA M, GÓMEZ-FERNANDEZ P. Bloqueantes del receptor mineralocorticoide en la enfermedad renal crónica.
- Nefrologia 2021; 41:258-275.

 6. S. Shin, Jung-Im MD, MPH; Palta, Mari PhD; Djamali, Arjang MD; Kaufman, Dixon B. MD, PhD; Astor, Brad C. PhD, MPH. The Association Between Renin-Angiotensin System Blockade and Long-term Outcomes in Renal Transplant Recipients: The Wisconsin Allograft Recipient Database (WisARD). Transplantation 100(7):p1541-1549, July 2016. | DDI: 10.1097/TP.0000000000000938
- 7. de Sousa MV, Guida JP, do Valle CF, Camargo LF, Rivelli GG, Mazzali M. Spironolactone in Post-Transplant Proteinuria: A Safe Alternative Therapy. Transplant Proc. 2017 May;49(4):813-816.doi: 10.1016/j.transproceed.2017.01.075. PMID: 28457401.

