

Marcelo Costa Batista<sup>1</sup>, Steve Chadban<sup>2</sup>, Saeed Al-Ghamdi<sup>3</sup>, Jaime Solorzano<sup>4</sup>, Juan Garcia Sanchez<sup>5</sup>, Cong Luong Nguyen<sup>6</sup>, Susana Goncalves<sup>7</sup>, Markiyan Mitchyn<sup>9</sup>, Tim Coker<sup>8</sup>, Laura Webber<sup>8</sup>, Lise Retat<sup>8</sup>

Hospital Israelita Albert Einstein, São Paulo, Brazi<sup>1</sup>, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia<sup>2</sup>, Department of Medicine, College of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia<sup>3</sup>, International Market Access, Lead, BioPharmaceuticals International CVRM Market Access, AstraZeneca, San Jose, Costs Rica<sup>4</sup>, Global Health Economics, BioPharmaceuticals, AstraZeneca, Cambridge, URV: International Associate Medical Director, Renal, COO, BioPharmaceuticals Medical, AstraZeneca, Buenos Ares, Ngenina<sup>4</sup>, Health Lingenina<sup>4</sup>, Health Lingenina<sup>4</sup>, Health Lingenina<sup>4</sup>, Health Lingenina<sup>4</sup>, Health Kingdom<sup>4</sup>

# Introduction

- Chronic Kidney Disease (CKD) affects around one in ten people around the world. However, many cases remain undiagnosed [1].
- Annual CKD screening is recommended in high-risk groups but is often underperformed due to limited access to screening resources [2].
- New digital solutions could accelerate diagnosis by identifying high-risk patients earlier [3].
- . The objective of this project was to carry out a costeffectiveness analysis across 6 countries of a CKD screening programme using a globally validated digital pre-screening risk calculator, compared with standard diagnosis and care [4].

# Methods

- · Six virtual populations, representative of Australia, Brazil, Mexico, Saudi Arabia, South Korea and the United Arab Emirates (UAE), were generated using the previously validated Inside CKD microsimulation [5].
- Virtual individuals were assigned an age, sex, CKD stage, comorbidity status (type 2 diabetes, hypertension), and probability of being diagnosed. Direct healthcare costs were assigned based on an individual's health status each year.
- An intervention was designed in which "high-risk" type 2 diabetes patients were identified using a validated digital solution and subsequently referred for CKD testing (estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio) and treatment (renin-angiotensin system blockers, RAASi) if diagnosed. The sensitivity and specificity and the proxies used for these, for each country, can be seen in Table 1.
- The digital solution uses five universal inputs (age, sex, blood pressure, body mass index, and duration of type 2 diabetes) to identify patients at 'high-risk' of having CKD, using an algorithm based on certain assumptions (Fig. 1).
- The health and economic benefits of introducing the digital solution were quantified and these epidemiological, quality of life and cost outputs were compared with the standard diagnosis and care scenario (Fig. 2).

| Table 1. Sensitivity and specificity of the digital solution |                        |       |             |  |  |  |  |
|--------------------------------------------------------------|------------------------|-------|-------------|--|--|--|--|
| Country                                                      | Proxy used Sensitivity |       | Specificity |  |  |  |  |
| Australia                                                    | Western Pacific        | 0.835 | 0.440       |  |  |  |  |
| Brazil                                                       | Americas               | 0.733 | 0.670       |  |  |  |  |
| Mexico                                                       | Americas               | 0.733 | 0.670       |  |  |  |  |
| Saudi Arabia                                                 | Eastern Mediterranean  | 0.768 | 0.464       |  |  |  |  |
| South Korea                                                  | South-East Asia        | 0.798 | 0.560       |  |  |  |  |
| UAE                                                          | Eastern Mediterranean  | 0.768 | 0.464       |  |  |  |  |



Supported by AstraZeneca



# Results

- · Compared with standard diagnosis and care, CKD screening using the validated digital solution followed by treatment was cost-effective in people defined as 'highrisk' in all six countries.
- Cumulative QALYs gained per patient ranged from 0.01 (Saudi Arabia, South Korea) to 0.04 (Brazil) (Table 2).
- · For example, in Australia, using a willingnessto-pay threshold of \$50,000AUD per additional quality adjusted life year (QALY), the incremental cost-effectiveness ratio was estimated at \$6,195AUD/QALY (Table 2).
- Cumulative years of life gained per patient ranged from less than one month (Mexico) to around two months (Brazil) (Table 2).

Table 2 Willingness-to-pay thresholds, incremental cost-effectiveness ratio, quality-adjusted life years gained per person and years of life gained per person under the digital solution scenario

| Country      | Willingness-to-<br>pay threshold<br>per QALY <sup>a</sup> | ICER<br>(Lifetime<br>Horizon) <sup>b</sup> | Net monetary<br>benefit ° | Maximum<br>acceptable cost<br>per patient <sup>d</sup> | Cumulative<br>QALYs<br>gained per<br>patient | Cumulative<br>years of life<br>gained per<br>patient |
|--------------|-----------------------------------------------------------|--------------------------------------------|---------------------------|--------------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| Australia    | AU\$50,000                                                | AU\$6,195                                  | AU\$984                   | AU\$1,183.03                                           | 0.02246                                      | 0.03553                                              |
| Brazil       | R\$36,634.75                                              | R\$25,060                                  | R\$470                    | R\$701.79                                              | 0.04063                                      | 0.06328                                              |
| Mexico       | Mex\$204,893                                              | Mex\$42,777                                | Mex\$1,564                | Mex\$4,469.11                                          | 0.00965                                      | 0.01476                                              |
| Saudi Arabia | 90,000ويال                                                | 32,692ريال                                 | 823ھيال                   | 1,127.16يال                                            | 0.01436                                      | 0.02297                                              |
| South Korea  | ₩25,000,000                                               | ₩2,991,431                                 | ₩320,049                  | ₩400,105                                               | 0.01454                                      | 0.02217                                              |
| UAE          | 133,255.د                                                 | 35,561.د                                   | 2,313-                    | 2,313.43                                               | 0.02368                                      | 0.03693                                              |

an dollar; R\$: Brazilian Real; Mex\$: Mexican Peso; Jg: Saudi Riyal; 🗰 South Korean Won; 🤐 JUnited Arab Emirates Dirham; ICER: Incremental cost-effective ratio; QALY: quality-He year awnum threshold at which an intervention is considered cost-effective: b) cost per QALY gained; c) the multiplication of QALYs gained by the willingness to pay threshold, subtracting the tal cost of screening; d) the maximum cost of screening that meets the willingness to pay threshold

## Conclusions

- Targeted CKD screening via an easy-to-use digital solution may be a cost-effective way to improve patient outcomes as well as reduce time and cost to healthcare practitioners.
- Demonstration of effectiveness in various real-world, country-specific contexts will be required.

### References

- Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2020; 395(10225): 709-33.
  Silvana Nader Nagib, Saeed Abdelwahab, Ghada Essam El-Din Amin & Mohamed Farouk Allam (2021) Screening and early detection of chronic kidney disease at primary healthcare. Clinical and Experimental Hypertension, 43:5, 416-418.
  Kolasa K, Kozinski G. How to Value Digital Health Interventions? A Systematic Literature Review. Int J Environ Res Public Health.
- 2020;17(6):2119. Published 2020 Mar 23, doi:10.3390/jjeph1706/2119 Sisk R, Sammut-Powell C, Budd J et al. A Global Validation of a Minimal-Resource Pre-Screening Model for Reduced Kidney Function in Patients With Type 2 Diabetes. American Society of Nephrology conference abstract. Available from: https://www.asn-
- Patients With Type 2 Diabetes. American Society of Nephrology Conference asstract. Available from: https://www.ash-online.org/deucation/kidneyweek/2022/program-abstract.aspx?controlld=3764598 5. Tangri N, Chadban S, Cabrera C, Retat L, Sánchez JJG. Projecting the Epidemiological and Economic Impact of Chronic Kidney Disease Using Patient-Level Microsimulation Modelling: Rationale and Methods of Inside CKD. Adv Ther. 2023 Jan;40(1):265-281. 6. Begos D, Milojkovic B. Mo382: Validation of a Handheld Point-Of-Care Creatinine/EGFR Meter for Evaluating Renal Function. Nephrology Dialysis Transplantation. 2022;37(Supplement\_3)

### Acknowledgements

We acknowledge Rory Cameron, Camilla Sammut-Powell, and Rose Sisk for their support in study development