K.KUMARASIVAM ENDOWMENT FUND (KKEF) MEMORIAL PUBLIC LECTURE & YOUNG ENVIRONMENTALIST INTERNSHIPAWARD 2016

STRATEGIZING CLIMATE CHANGE ACTIONS IN MALAYSIA

19 January 2017

Ву

Yap Kok Seng

Content of Presentation

- 1. Climate Change and Sustainable Development
- 2. Historical Greenhouse Gas Emissions
- 3. GHG Emission Reduction Target under the Paris Agreement
- 4. GHG Emissions through Linear Trend Analysis
- Sensitivity of GHG Emissions Intensity to GDP Growth Rates
- 6. GHG Emissions per Capita under different Scenarios
- 7. Emission Reduction Programmes
- 8. Concluding Remarks

Climate Change and Sustainable Development

THE 5 P'S OF SUSTAINABLE DEVELOPMENT

PEOPLE

We are determined to end poverty and hunger, in all their forms and dimensions, and to ensure that all human beings can fulfill their potential in dignity and equality and in a healthy environment.

PROSPERITY

We are determined to ensure that all human beings can enjoy prosperous and fulfilling lives and that economic, social and technological progress occurs in harmony with nature.

Source: UN Sustainable Development Goals (SDGS), 2015

PARTNERSHIP

We are determined to mobilize the means required to implement this Agenda through a revitalised Global Partnership for SD, based on a spirit of strengthened global solidarity*, with the participation of all countries, all stakeholders & all people.

SUSTAINABLE DEVELOPMENT

PLANET

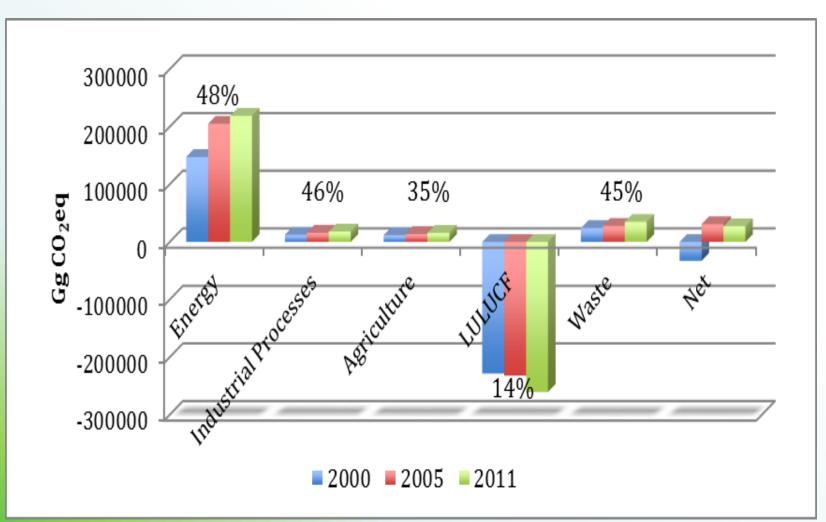
We are determined to protect the planet from degradation, including through sustainable consumption and production, sustainably managing its natural resources and taking urgent action on climate change, so that it can support the needs of the present and future generations.

PEACE

We are determined to foster peaceful, just and inclusive societies which are free from fear and violence. There can be no sustainable development without peace and no peace without sustainable development.

* focussed in particular on the needs of the poorest and most vulnerable and with the participation of all countries. SD = Sustainable Development

THE GLOBAL GOALS For Sustainable Development



Historical Greenhouse Gas Emissions (of Malaysia)

Table 2.2: Emissions and Removals of GHG for each Sector in 2011

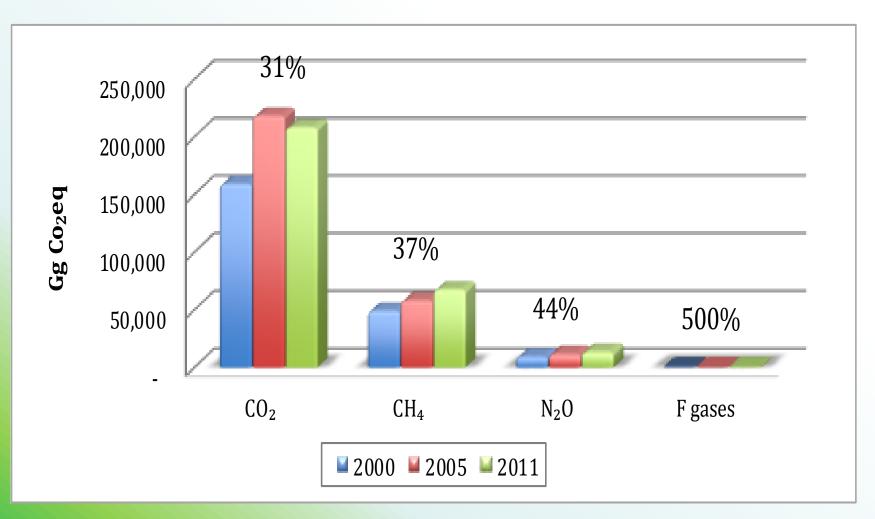

Sectors		Emissions (Gg) A	GWPs B	CO ₂ Equivalent (Gg) C=(A x B)
Energy	CO_2 CH_4 N_2O	188,575.12 1,421.38 1.58	1 21 310	188,575.12 29,848.98 489.53
Sub-total	_			218,913.63
Industrial Processes	$\begin{array}{c} \text{CO}_2\\ \text{CH}_4\\ \text{N}_2\text{O}\\ \text{HFC}\\ \text{SF6}\\ \text{CF4}\\ \text{C2F6} \end{array}$	17,192.91 5.12 - 0.5244 0.00058 0.0248 0.000992	1 21 310 1,300 23,900 6,500 9,200	17,192.91 107.52 - 681.72 13.86 161.20 9.13
Sub-total				18,166.34
Agriculture	CH₄ N₂O	159.27 40.10	21 310	3,344.58 12,430.72
Sub-total	2			15,775.30
Waste	CH ₄ N ₂ O	1,630.05 2.11	21 310	34,230.94 654.10
Sub-total				34,885.04
Land Use Land Use Change and Forestry (Source)	CO_2 CH_4 N_2O	2,489.67 0.00 0.00	1 21 310	2,489.67 0.00 0.00
LULUCF (Sink)	ĊO ₂	-262,946.41	1	-262,946.41
Sub-total	260,456.56			
Total (emissions only)	290,229.98			
Net Total (after subtracting sink)				27,283.57

Figure 2.1 Comparison of Greenhouse Gas Emissions by Sector between 2000 and 2011

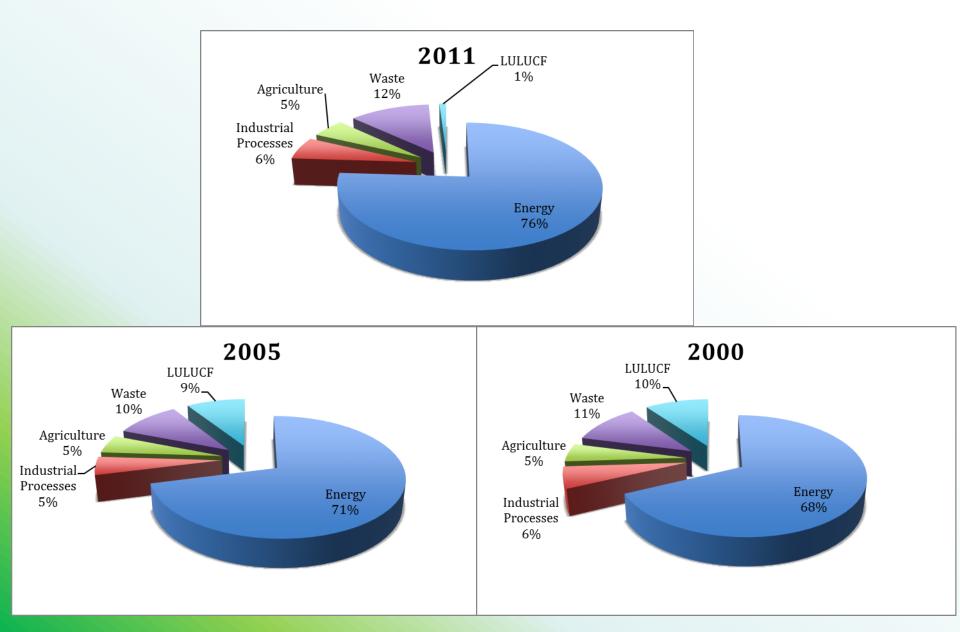
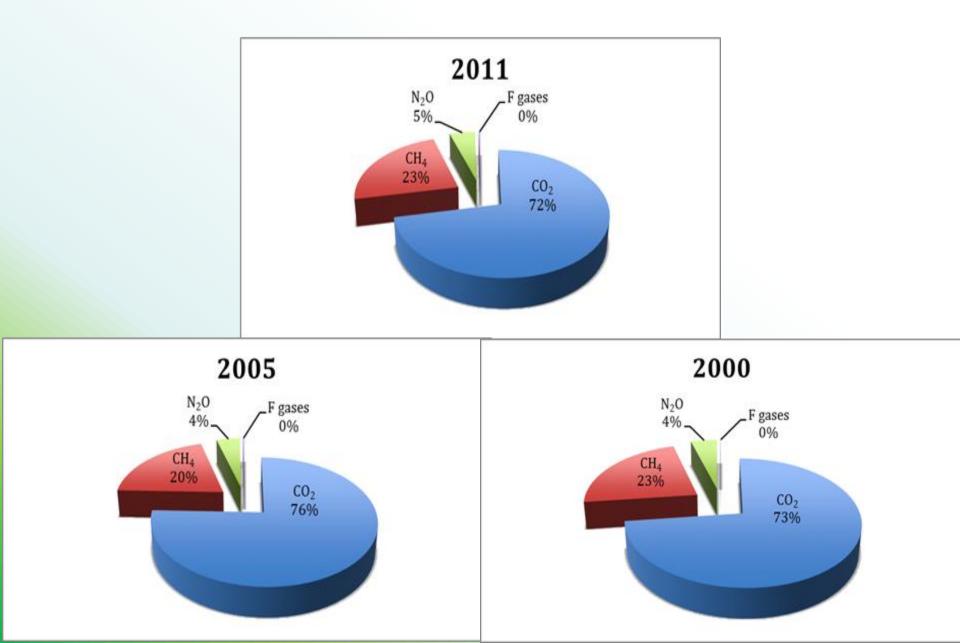

Note: Percentage indicates the % emission increase/decrease between 2000 and 2011.

Figure 2.2 Comparison of Greenhouse Gas Emissions by Gas between 2000 and 2011



Note: Percentage indicates the % emission increase/decrease between 2000 and 2011.

Figure 2.3: Percentage of GHG Emissions by Sectors in 2011, 2005 and 2000

Figure 2.4: Percentage Emissions according to GHG in 2011, 2005 and 2000

Table 2.5: Key Source Analysis of GHG Emissions for 2011, with LULUCF

Sector	Key sources	Gas	<i>Current Year Estimate (Gg CO2 Eq.)</i>	Level Assessment (%)	Cumulative
Energy	Energy Industries: Public Electricity	CO ₂	87,885.41	30.28%	30.28%
Energy	Transport: Road Transportation	CO ₂	41,601.95	14.33%	44.61%
Waste	Solid Waste Disposal Sites	CH_4	31,127.82	10.73%	55.34%
Energy	Fugitive Emissions from Oil and Gas Operations	CH_4	29,536.66	10.18%	65.52%
Energy	Manufacturing Industries and Construction	CO ₂	23,003.97	7.93%	73.45%
Energy	Energy Industries: Manufacture of Solid Fuels & other Energy Industries (Natural Gas Transformation)	CO ₂	22,920.48	7.90%	81.35%

Table 2.5: Key Source Analysis of GHG Emissions for 2011, with LULUCF (con't)

Sector	Key sources	Gas	<i>Current Year Estimate (Gg CO2 Eq.)</i>	Assessment	Cumulative
Agriculture	Agricultural Soils	N ₂ O	10,948.33	3.77%	85.12%
Industrial Processes	Mineral Products: Cement Production	CO ₂	7,766.20	2.68%	87.80%
Industrial Processes	Limestone and Dolomite Use	CO2	5,152.17	1.78%	89.58%
Waste	Industrial Wastewater: Palm Oil Mills	CH_4	2,960.14	1.02%	90.60%
Energy	Other Sectors: Commercial	CO_2	2,933.97	1.01%	91.61%
Energy	Energy Industries: Petroleum Refining	CO ₂	2,761.16	0.95%	92.56%
Energy	Other Sectors: Agriculture, Forestry and Fishery	CO ₂	2,732.81	0.94%	93.50%
Industrial Processes	Metal Industry: Iron and Steel Industry	CO ₂	2,565.33	0.88%	94.38%
LULUCF	Forest Land Converted to Other Land Use	CO ₂	2,489.67	0.86%	95.24%

Figure 2.8: Time Series Emissions between 1990 to 2011 for Energy Sector

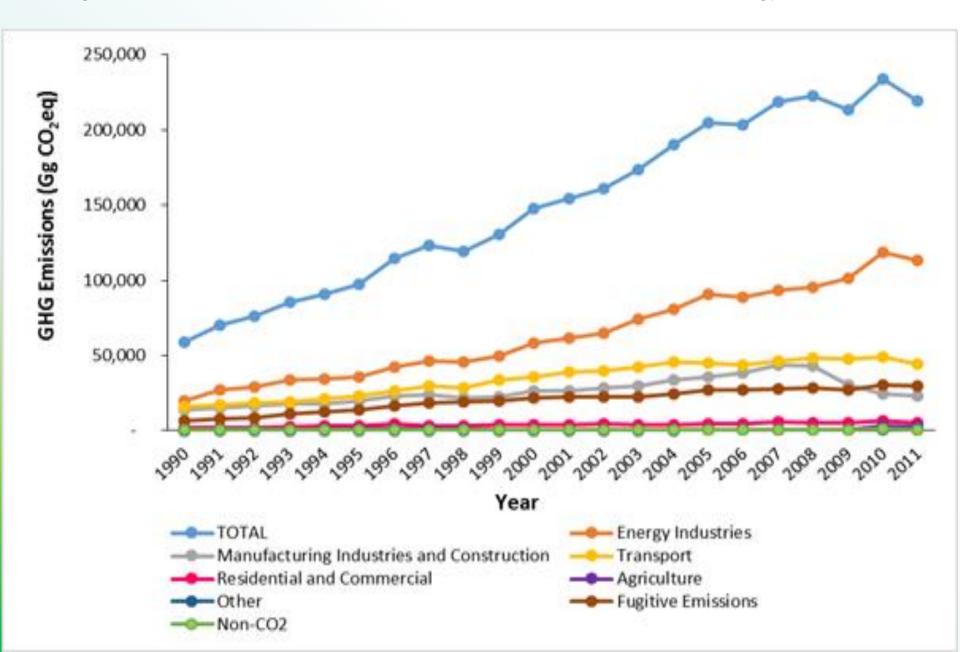


Figure 2.9: Time Series Emissions between 2000 and 2011 for Industrial Processor Sector

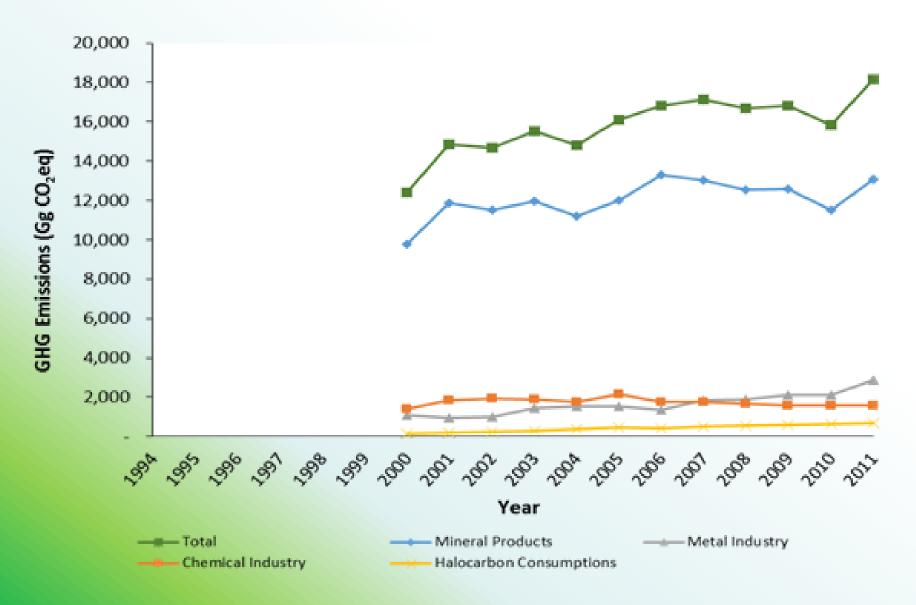
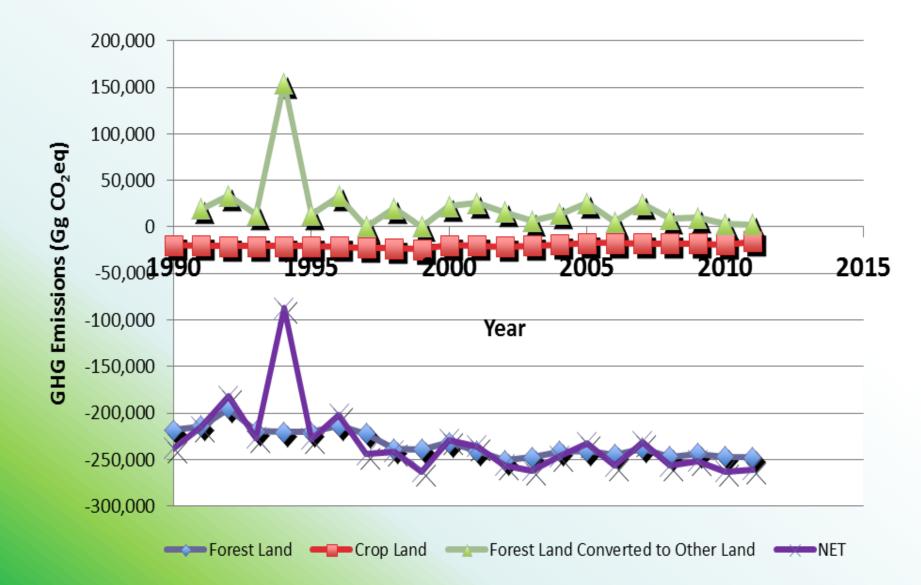
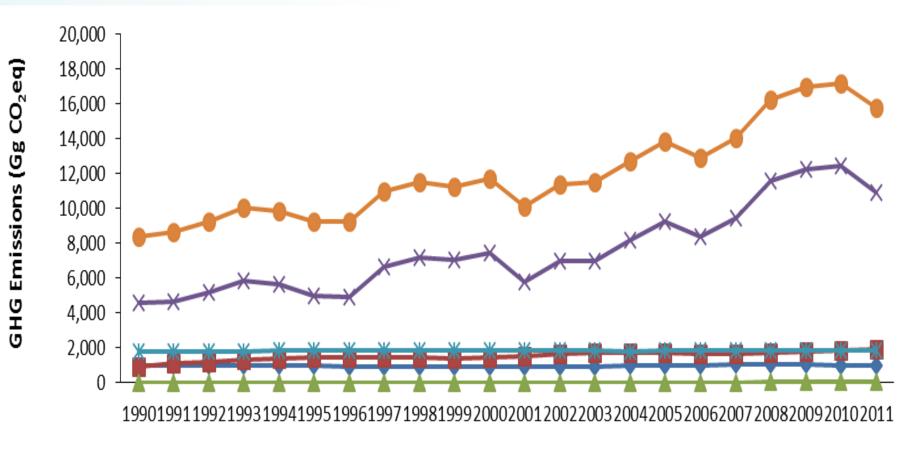
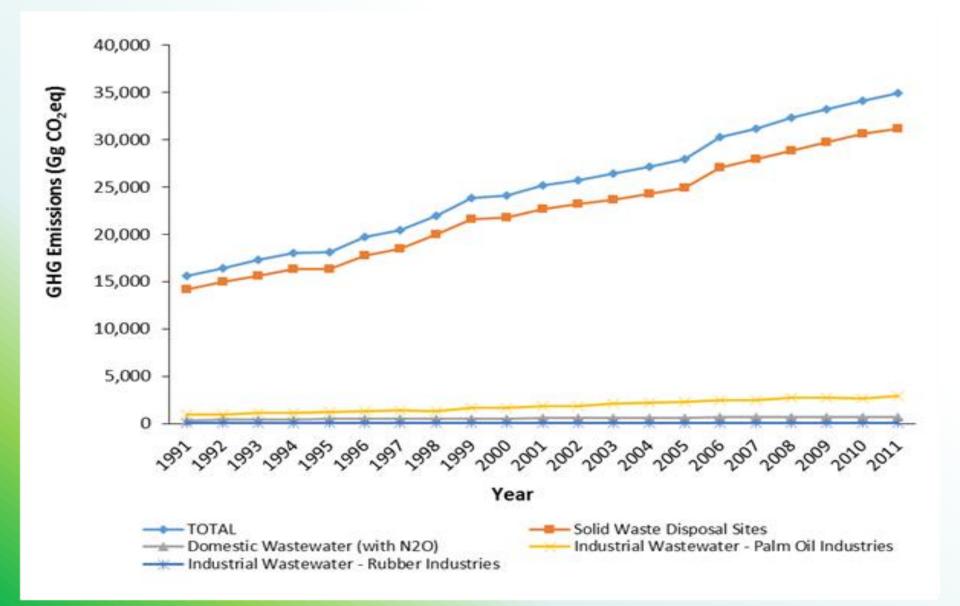




Figure 2.10: Time Series Emissions between 1990 and 2011 for LULUCF Sector

Figure 2.11: Time Series Emissions between 1990 and 2011 for Agriculture Sector

Year



---- Manure Management

----- Agricultural Burning

🗕 Total

Figure 2.12: Time Series Emissions between 1991-2011 for Waste Sector

Table 2.7: GHG Emission Indices for Malaysia

	Unit	2000	2005	2011	% increase between 2005 and 2011
Population	Million	23.3	26.1	29.1	11.49%
GDP at constant 2005 prices	billion RM	431.234	543.578	711.760	30.94%
Approach 1: Without LULUCF					
CO ₂ eq emissions	mil tonne	195.703	262.996	287.740	9.41%
CO ₂ eq emissions per capita	tonne/capita	8.399	10.076	9.888	-1.87%
CO ₂ eq emissions per GDP	tonne/ thousand RM	0.4538	0.4838	0.4043	-16.43%

Table 2.7: GHG Emission Indices for Malaysia Con't 1)

	Unit	2000	2005	2011	% increase between 2005 and 2011
Population	Million	23.3	26.1	29.1	11.49%
GDP at constant 2005 prices	billion RM	431.234	543.578	711.760	30.94%
Approach 2: With LULUCF Emissions Only					
CO ₂ eq emissions	mil tonne	218.063	288.663	290.230	0.54%
CO ₂ eq emissions per capita	tonne/capita	9.360	11.060	9.974	-9.82%
CO ₂ eq emissions per GDP	tonne/ thousand RM	0.5057	0.5310	0.4078	-23.20%

Table 2.7: GHG Emission Indices for Malaysia (Con't 2)

	Unit	2000	2005	2011	% increase between 2005 and 2011
Population	Million	23.3	26.1	29.1	11.49%
GDP at constant 2005 prices	billion RM	431.234	543.578	711.760	30.94%
Approach 3: With LULUCF (emissions and removals)					
CO ₂ eq emissions	mil tonne	-32.864	30.869	27.284	-11.62%
CO ₂ eq emissions per capita	tonne/capita	-1.410	1.183	0.938	-20.71%
CO ₂ eq emissions per GDP	tonne/ thousand RM	-0.0762	0.0568	0.0383	-32.57%

GHG Emission Reduction Target under the Paris Agreement

Malaysia GHG Emission Reduction Targets

- INDC 2015: Malaysia intends to reduce its greenhouse gas (GHG) emissions intensity of GDP by 45% by 2030 relative to the emissions intensity of GDP in 2005. This consist of 35% on an unconditional basis and a further 10% is condition upon receipt of climate finance, technology transfer and capacity building from developed countries.
- **COP21 2015:** Malaysia reaffirm its commitment to maintain at least 50% level of forest and tree cover.

GHG EMISSIONS THROUGH LINEAR TREND ANALYSIS

GHG Emissions Intensity of GDP through 2030 – Linear Trend GHG Emissions & 6 % GDP Growth Rate

	2005	2010	2015	2020	2025	2030
Energy	205.100	233.736	275.912	319.021	362.052	404.960
Industrial Processes	16.115	15.964	19.061	20.765	22.470	24.174
Agriculture	13.845	17.214	17.697	19.682	21.667	23.652
Waste	27.934	34.084	38.815	43.768	48.720	53.673
LULUCF Emissions	25.666	3.239	20,000	20,000	20,000	20,000
Total	288.663	304.237	371.486	423.237	474.910	526.461
GDP (2005 prices) 6% Growth Rate	548.6	676.7	877.19	1,187.27	1,588.3	2,126.21
GHG Intensity	0.53	0.45	0.42	0.36	0.30	0.25
Percent Reduction		-14.5	-19.5	-32.2	-43.25	-52.9

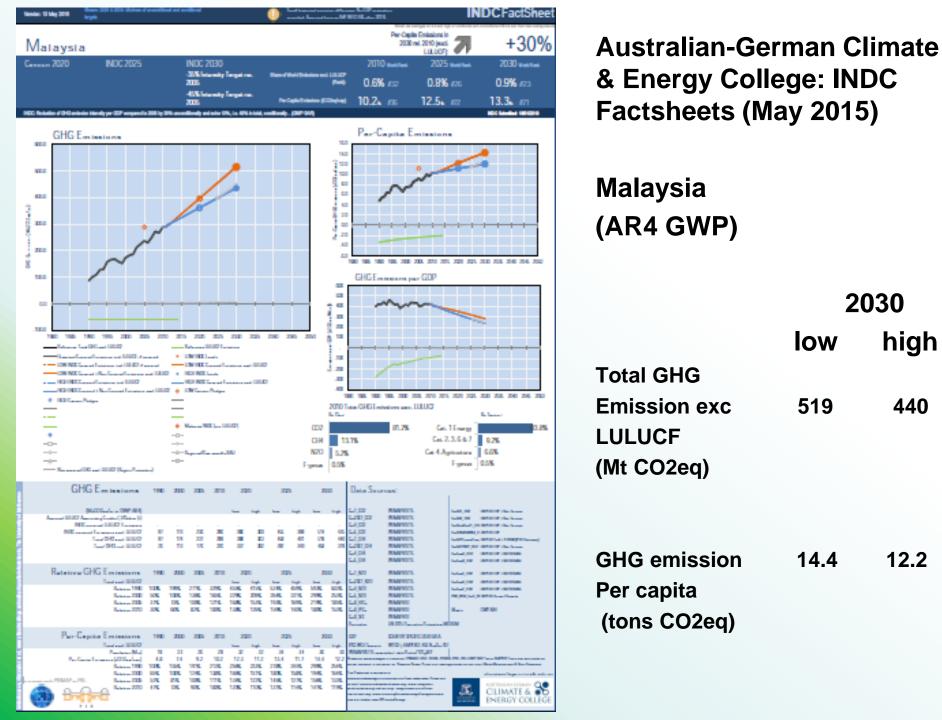
SENSITIVITY OF GDP EMISSIONS INTENSITY REDUCTION TO GDP GROWTH RATES

GDP Scenarios at 2005 Constant Price

GDP Growth Rate	6%	5.5%	5%	5% first half, 4.5% second half	4.5%	4%
2005	548.6	548.6	548.6	548.6	548.6	548.6
2010	676.7	676.7	676.7	676.7	676.7	676.7
2015	887.19	878.84	870.53	870.53	862.26	854.6
2020	1187.27	1148.61	1111.05	1111.05	1074.54	1039.06
2025	1588.83	1501.19	1418.01	1384.57	1339.07	1264.17
2030	2126.21	1961.97	1809.08	1725.42	1668.72	1538.06

Sensitivity of GHG Emission Intensity Reduction to GDP Growth Rate

	2005 (actual)	2010 (actual)	2015	2020	2025	2030
6%	-	-14.5%	-20.4%	-32.2%	-43.2%	-52.9%
5.5%	-	-14.5%	-19.7%	-30.0%	-39.9%	-49.0%
5%	-	-14.5%	-18.9%	-27.6%	-36.4%	-44.7%
5% first half, 4.5% second half	-	-14.5%	-18.9%	-27.6%	-34.8%	-42.0%
4.5%	-	-14.5%	-18.1%	-25.1%	-32.6%	-40.0%
4 %	-	-14.5%	-17.3%	-22.5%	-28.6%	-34.9%

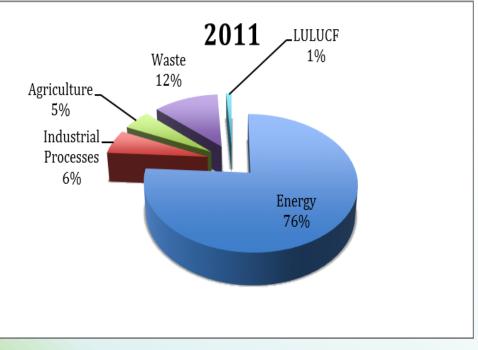

GHG Reduction required to achieve 45 % GHG Intensity Reduction with 4 % GDP Growth Rate

2005 GHG Intensity	0.5261
2030 GDP at 4 % Growth Rate	RM 1,536.06 billion
GHG Emissions with 45%	444.46 Mt CO2eq
GHG Reduction required	Approx 85 Mt CO2eq

GHG EMISSIONS PER CAPITA UNDER DIFFERENT SCENARIOS

GHG Emissions per Capita under different Scenarios (tons CO₂eq/per capita)

	2005	2010	2015	2020	2025	2030
Roadmap BAU	10.7	11.4	12.3	13.0	14.9	16.6
Linear GHG Emission Trend	11.1	10.06	12.2	13.1	13.9	14.6
Capping GHG Emissions at 444 Mt CO2eq in 2030 with 4% Growth Rate						12.3
Roadmap AMB	10.7	10.3	10.2	10.1	10.8	11.3


high

440

12.2

Key Messages

- (i) To achieve full 45 % GHG Intensity Reduction by 2030: Reduce emissions by 85 Mt CO₂eq per year by 2030
- (ii) Cap Emissions per capita at 12.2 tons CO₂eq per capita for 2030
- (iii) Sectoral Reduction proportional to 2011 emissions?

EMISSION REDUCTION PROGRAMMES

Implementing the Paris Agreement NDC

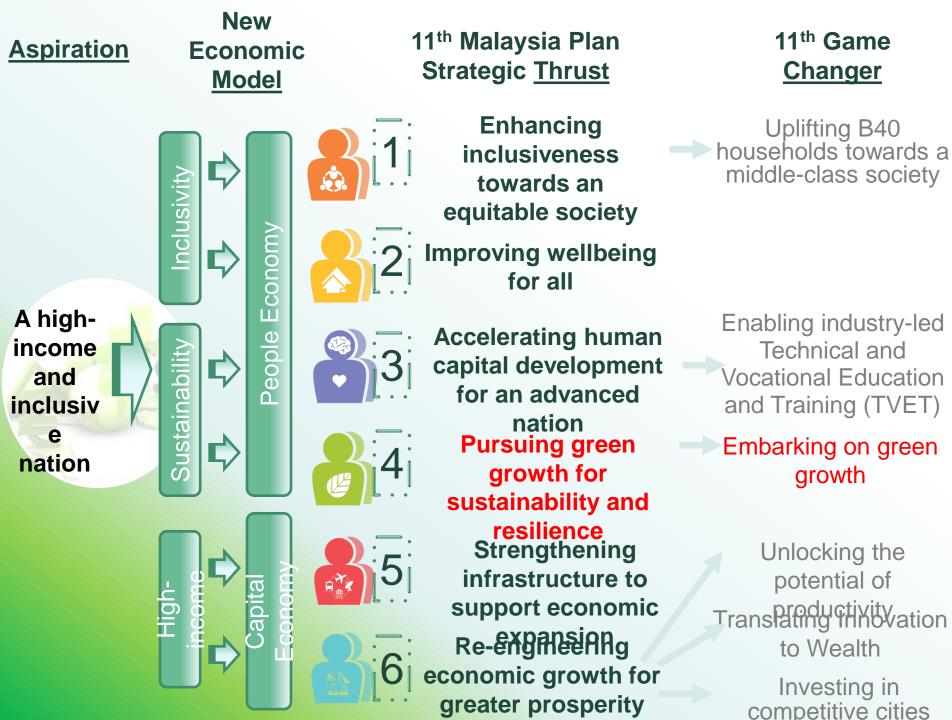
Sector	Mitigation Action
	Renewable Energy development
	 Feed-in Tariff (FiT) mechanism
	 non- FiT regulated public and private licensees and other mechanisms
	(Off-grid biomass & biogas, hydropower and Utility-scale Solar PV)
Energy	Enhancing industrial energy efficiency
	Promotion of efficient electricity consumption in Government and private sector buildings
	Implementation of green building rating scheme
	Development and application of green technology

Implementing the Paris Agreement NDC

Sector	Mitigation Action		
	Use of palm-based biodiesel for transport sector		
Energy	Development and usage of energy-efficient vehicles (EEVs)		
	Use of compressed natural gas (CNG) in motor vehicles		
	Rail-based & road based public transport		
	Emissions reduction through sustainable management of		
LULUCF	forest		
LULUCF	- Gazettement under CFS and HoB		
	- Other gazettement		
	3R Programme & Waste paper recycling		
Waste	Biogas capture from palm oil mill effluent (POME)		
	treatment		
Agriculture	Promoting good agriculture practices		

Implementing the NDC

Main challenges with implementing the INDC


- Early implementation is essential
- Translating the NDC into sectoral roadmaps and policies
- Mainstreaming NDC implementation
 across government
- Maintaining a sense of collective action
- Competitiveness concerns, distributional issues, trade-offs and synergies

Malaysia's Mitigation Actions (BUR)

Sector	Mitigation Action	Emission Reduction Achieved in 2013 (kt CO ₂ eq)	Potential Emission Reduction in 2020 (kt CO ₂ eq)
Energy	RE implementation through Feed-in Tariff mechanism	252.78	5,458.09
	RE electricity generation by non Feed-in Tariff regulated public and private licensees and other mechanisms	948.77	2,179.29
	Use of palm-based biodiesel in blended petroleum diesel	719.74	1,802.49
	Application of green technology	94.81	1,426.35
	Implementation of green building rating scheme	60.40	858.40
	Efficient electricity consumption in all Federal Government ministry buildings (baseline established in 2013)	-	98.21
	Reducing emissions through development and usage of energy-efficient vehicles (EEVs)	40.96	199.74
	Use of compressed natural gas (CNG) in motor vehicles	154.62	217.57
	Rail-based public transport	214.93	977.51
LULUCF	Sustainable forest management	13,797.37	13,800.00
Waste	Waste paper recycling	1,993.47	2,159.45
	Biogas capture from palm oil mill effluent (POME) treatment	300.95	3,001.89
Total		18,578.80	32,178.99

KeTTHA's Energy Efficiency Programme ENERGY DEMAND : BAU vs NEEAP

Concluding Remarks

- To ensure full 45% GHG Emission Intensity Reduction by 2030,
 - GHG Emissions should not be more than 444 MT CO2eq
 - Per Capita Emission should not be more than 12.2 tons/capita
- To achieve this, Emission Reduction Target by Sectors need to be agreed upon
- Green growth incorporating GHG emission reduction need to be a development focus
- Participation by the public and private sectors are necessary

THANK YOU